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Abstract

Recent developments in quantum computing have revived interest in the notion of information

as a foundational principle in physics. It has been suggested that information provides a means of

interpreting quantum theory and a means of understanding the role of entropy in thermodynam-

ics. The thesis presents a critical examination of these ideas, and contrasts the use of Shannon

information with the concept of ’active information’ introduced by Bohm and Hiley.

We look at certain thought experiments based upon the ’delayed choice’ and ’quantum eraser’

interference experiments, which present a complementarity between information gathered from a

quantum measurement and interference effects. It has been argued that these experiments show

the Bohm interpretation of quantum theory is untenable. We demonstrate that these experiments

depend critically upon the assumption that a quantum optics device can operate as a measuring

device, and show that, in the context of these experiments, it cannot be consistently understood

in this way. By contrast, we then show how the notion of ’active information’ in the Bohm

interpretation provides a coherent explanation of the phenomena shown in these experiments.

We then examine the relationship between information and entropy. The thought experiment

connecting these two quantities is the Szilard Engine version of Maxwell’s Demon, and it has been

suggested that quantum measurement plays a key role in this. We provide the first complete

description of the operation of the Szilard Engine as a quantum system. This enables us to

demonstrate that the role of quantum measurement suggested is incorrect, and further, that the

use of information theory to resolve Szilard’s paradox is both unnecessary and insufficient. Finally

we show that, if the concept of ’active information’ is extended to cover thermal density matrices,

then many of the conceptual problems raised by this paradox appear to be resolved.
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Chapter 1

Introduction

In recent years there has been a significant interest in the idea of information as fundamental

principle in physics[Whe83, Whe90, Zur90b, Per93, FS95, Fri98, Deu97, Zei99, Sto90, Sto92, Sto97,

amongst others]. While much of this interest has been driven by the developments in quantum

computation[Gru99, CN01] the issues that are addressed are old ones. In particular, it has been

suggested that:

1. Information theory must be introduced into physical theories at the same fundamental level

as concepts such as energy;

2. Information theory provides a resolution to the measurement problem in quantum mechanics;

3. Thermodynamic entropy is equivalent to information, and that information theory is essential

to exorcising Maxwell’s Demon.

The concept of information used in these suggestions is essentially that introduced by Shannon[Sha48]

and it’s generalisation to quantum theory by Schumacher[Sch95]. This concept was originally con-

cerned with the use of different signals to communicate messages, and the capacity of physical

systems to carry these signals, and is a largely static property of statistical ensembles.

A completely different concept of information was introduced by Bohm and Hiley[BH93] in the

context of Bohm’s interpretation of quantum theory[Boh52a, Boh52b]. This concept was much

more dynamic, as it concerned the manner in which an individual system evolves.

In this thesis we will be examining some of these relationships between information, thermo-

dynamic entropy, and quantum theory. We will use information to refer to Shannon-Schumacher

information, and active information to refer to Bohm and Hiley’s concept. We will not be examining

the ideas of Fisher information[Fis25, Fri88, Fri89, FS95, Fri98, Reg98], although it is interesting to

note that the terms that result from applying this to quantum theory bear a remarkable equivalence

to the quantum potential term in the Bohm approach. Similarly, we will not be considering the

recently introduced idea of total information due to Bruckner and Zeilinger[BZ99, BZ00a, BZ00b].

We will also leave aside the concept of algorithmic information[Ben82, Zur89a, Zur89b, Zur90a,
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Cav93, Cav94], as this concept has only been defined within the context of classical Universal Tur-

ing Machines. To be meaningful for quantum systems this concept must be extended to classify

quantum bit strings operated upon by a Universal Quantum Computer, a task which presents

some considerable difficulties.

The structure of the thesis is as follows.

In Chapter 2 we will briefly review Shannon and Schumacher information, and the problems for

interpreting information in a quantum measurement. Chapter 3 will introduce Bohm and Hiley’s

concept of active information, and will examine recent thought experiments[ESSW92] based upon

the use of ’one-bit detectors’ which criticises this interpretation. We will show that this criticism

is unfounded.

Chapter 4 introduces the relationship between entropy and information, by reviewing the dis-

cussion of Szilard’s Engine[Szi29]. This thought experiment has been used to suggest that an

intelligent being (a Maxwell Demon) could reduce the entropy of a system by performing measure-



Finally in Chapter 10 we will re-examine the concept of active information to see if it has any rel-

evance to thermodynamics. We will find that recent developments of the Bohm interpretation[BH00]

suggest that the problems surrounding the Szilard Engine may be viewed in a new light using the

concept of active information. The fundamental conflict in interpreting thermodynamics is be-

tween the statistical ensemble description, and the state of the individual system. We will show

that, by extending Bohm’s interpretation to include the quantum mechanical density matrix we

can remove this conflict in a manner that is not available to classical statistical mechanics and

does not appear to be available to other interpretations of quantum theory.

With regard to the three issues raised above, therefore, we will have found that:

1. The introduction of information as a fundamental principle in physics certainly provides a

useful heuristic device. However, to be fruitful a much wider concept of information than

Shannon’s seems to be required, such as that provided by Bohm and Hiley;

2. The use of Shannon-Schumacher information in a physical theory must presume the existence

of a well defined measurement procedure. Until a measurement can be certain to have taken

place, no information can be gained. Information theoretic attempts to resolve the quantum

measurement problem are therefore essentially circular unless they use a notion of information

that goes beyond Shannon and Schumacher;

3. Although Shannon-Schumacher information and Gibbs-Von Neumann entropy are formally

similar they apply to distinctly different concepts. As an information processing system must

be implemented upon a physical system, it is bound by physical laws and in an appropriate

limit they become related by Landauer’s Principle. Even in this limit, though, the different

nature of the concepts persists.
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Chapter 2

Information and Measurement

In this Chapter we will briefly review the concept of Shannon information[Sha48, SW49] and it’s

application to quantum theory.

Section 1 reviews the classical notion of information introduced by Shannon and it’s key fea-

tures. Section 2 looks at the application of Shannon information to the outcomes of quantum

measurements[Kul59, Per93, Gru99, CN01]. We will be assuming that a quantum measurement

is a well defined process. The Shannon measure may be generalised to Schumacher information,

but the interpretation of some of the quantities that are constructed from such a generalisation

remains unclear. Finally in Section 3 we will consider an attempt by [AC97] to use the quantum

information measures to resolve the measurement problem, and show that this fails.

2.1 Shannon Information

Shannon information was original defined to solve the problem of the most efficient coding of a

set of signals[SW49, Sha48]. We suppose that there is a source of signals (or sender) who will

transmit a given message a with probability Pa. The message will be represented by a bit string

(an ordered series of 1’s and 0’s). The receiver will have a decoder that will convert the bit string

back into it’s corresponding message. Shannon’s theorem shows that the mean length of the bit

strings can be compressed to a size

ISh = −
∑

a

pa log2 pa (2.1)

without introducing the possibility of errors in the decoded message1. This quantity ISh is

called the Shannon information of the source. As it refers to the length in bits, per message, into

which the messages can be compressed, then a communication channel that transmits ISh bits per

message has a signal capacity of ISh.
1This assumes there is no noise during transmission.
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This concept of information has no relationship to the meaning or significance that the sender

or the receiver attributes to the message itself. The information content of a particular signal,

− log2 pa, is simply an expression of how likely, or unlikely the message is of being sent. The less

likely the occurrence of a message, the greater information it conveys. In the limit where a message

is certain to occur (Pa = 1), then no information is conveyed by it, as the receiver would have

known in advance that it was going to be received. An extremely rare message conveys a great deal

of information as it tells the receiver that a very unlikely state of affairs exists. In many respects,

the Shannon information of the message can be regarded as measuring the ’surprise’ the receiver

feels on reading the message!

The most important properties of the Shannon information, however, are expressed in terms

of conditional I(α|β) and mutual I(α : β) information, where two variables α and β are being

considered. The probability of the particular values of α = a and β = b simultaneously occurring

is given by P (a, b), and the joint information is therefore

I(α, β) = −
∑

a,b

P (a, b) log2 P (a, b)

From the joint probability distribution P (a, b) we construct the separate probability distributions

P (a) =
∑

b

P (a, b)

P (b) =
∑

a

P (a, b)

the conditional probabilities

P (a|b) =
P (a, b)
P (b)

P (b|a) =
P (a, b)
P (a)

and the correlation

P (a : b) =
P (a, b)

P (a)P (b)

This leads to the information terms2

I(α) = −
∑

a,b

P (a, b) log2 P (a)

I(β) = −
∑

a,b

P (a, b) log2 P (b)

I(α|β) = −
∑

a,b

P (a, b) log2 P (a|b)

I(β|α) = −
∑

a,b

P (a, b) log2 P (b|a)

I(α : β) = −
∑

a,b

P (a, b) log2 P (a : b)

2These terms may differ by the minus sign from the definitions given elsewhere. The Shannon information as

given represents the ignorance about the exact state of the system.
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which are related by

I(α|β) = I(α, β)− I(β)

I(β|α) = I(α, β)− I(α)

I(α : β) = I(α, β)− I(α)− I(β)

and obey the inequalities

I(α, β) ≥ I(α) ≥ 0

I(α, β) ≥ I(α|β) ≥ 0

min [I(α), I(β)] ≥ −I(α : β) ≥ 0

We can interpret these relationships, and the α and β variables, as representing communication

between two people, or as the knowledge a single person has of the state of a physical system.

2.1.1 Communication

If β represents the signal states that the sender transmits, and α represents the outcomes of the

receivers attempt to decode the message, then P (a|b) represents the reliability of the transmission

and decoding3.

The receiver initially estimates the probability of a particular signal being transmitted as P (b),

and so has information I(β). After decoding, the receiver has found the state a. Presumably

knowing the reliability of the communication channel, she may now use Bayes’s rule to re-estimate

the probability of the transmitted signals

P (b|a) =
P (a|b)P (b)

P (a)

On receiving the result a, therefore, the receiver has information

I(β|a) =
∑

b

P (b|a) log2 P (b|a)

about the signal sent. Her information gain, is

∆Ia(β) = I(β|a)− I(β) (2.2)

Over an ensemble of such signals, the result a will occur with probability P (a). The mean infor-

mation possessed by the receiver is then

〈I(β|a)〉 =
∑

a

P (a)I(β|a) = I(β|α)

So the conditional information I(β|α) represents the average information the receiver possesses

about the signal state, given her knowledge of the received state, while the term I(β|a) represents

3There are many ways in which the decoding may be unreliable. The communication channel may be noisy, the

decoding mechanism may not be optimally designed, and the signal states may be overlapping in phase space
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the information the receiver possesses given a specific outcome a. The mean information gain

〈∆I(β|a)〉 =
∑

a

P (a)∆Ia(β) = I(α : β)

The mutual information is the gain in information the receiver has about the signal sent. It can be

shown that, given that the sender is also aware of the reliability of the transmission and decoding

process, that the conditional information I(α|β) represents the knowledge the sender has about

the signal the receiver actually receives. The mutual information can then be regarded as the

symmetric function expressing the information both receiver and sender possess in common, or

equivalently, the correlation between the state of the sender and the state of the receiver.

If the transmission and decoding processes are completely reliable, then the particular receiver

states of α will be in a one-to-one correspondence with the signal states of β, with probabilities

P (a|b) = 1. This leads to

I(α) = I(β)

I(β|α) = I(α|β) = 0

I(α : β) = −I(α)

It should be remembered that the information measure of complete certainty is zero, and it increases

as the uncertainty, or ignorance of the state, increases. In the case of a reliable transmission and

decoding, the receiver will end with perfect knowledge of the signal state, and the sender and

receiver will be maximally correlated.

2.1.2 Measurements

The relationships above have been derived in the context of the information capacity of a com-

munication channel. However, it can also be applied to the process of detecting and estimating a

state of a system. The variable β will represent the a priori probabilities that the system is in a

particular state. The observer performs a measurement upon the system, obtaining the result in

variable α.

The initial states do not have to represent an exact state of the system. If we start by considering

a classical system with a single coordinate x and it’s conjugate momentum px, the different states

of β represent a partitioning of the phase space of the system into separate regions b, and the

probabilities P (b) that the system is located within a particular partition. The measurement

corresponds to dividing the phase space into a partitioning, represented by the different states of

α and locating in which of the measurement partitions the system is located.

We now find that the conditional information represents the improved knowledge the observer

has of the initial state of the system (given the outcome of the measurement) and the mutual

information, as before, represents the average gain in information about the initial state.

Note that if the measurement is not well chosen, it may convey no information about the original

partitioning. Suppose the partitioning of β represents separating the phase space into the regions
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px > 0 and px < 0, with equal probability of being found in either (P (px > 0) = P (px < 0) = 1
2

and a uniform distribution within each region. Now we perform a measurement upon the position

of the particle, separating the phase space into the regions x > 0 and x < 0. The probabilities are

P (px > 0|x > 0) = P (x>0jpx>0)P (px>0)
P (x>0) =

1
2

P (px < 0|x > 0) = P (x>0jpx<0)P (px<0)
P (x>0) =

1
2

P (px > 0|x < 0) = P (x<0jpx>0)P (px>0)
P (x<0) =

1
2

P (px < 0|x < 0) = P (x<0jpx<0)P (px<0)
P (x<0) =

1
2

A measurement based upon the partition x > 0 and x < 0 would produce no gain in information.

However, it is always possible to a define a finer grained initial partitioning (such as dividing the

phase space into the four quadrants of the x, px axes) for which the measurement increases the

information available, and in this case would provide complete information about the location of

the original partition.

If the measurement partition of α coincides with the partition of β then the maximum informa-

tion about β will be gained from the measurement. In the limit, the partition becomes the finely

grained partition where each point (px, x) in the phase space is represented with the probability

density function Π(px, x).

In classical mechanics the observer can, in principle, perfectly distinguish all the different states,

and make the maximum information gain from a measurement. However, in practice, some finite

partitioning of the phase space is used, owing to the physical limitations of measuring devices.

2.2 Quantum Information

When attempting to transfer the concept of information to quantum systems, the situation becomes

significantly more complex. We will now review the principal ways in which the measure and

meaning of information is modified in quantum theory.

The first subsection will be concerned with the generalisation of Shannon’s theorem, on com-

munication capacities. This produces the Schumacher quantum information measure. Subsection

2 will consider the Shannon information gain from making measurements upon a quantum sys-

tem. Subsection 3 reviews the quantities that have proposed as the generalisation of the relative

and conditional information measures, in the way that Schumacher information generalises the

Shannon information. These quantities have properties which make it difficult to interpret their

meaning.

2.2.1 Quantum Communication Capacity

The primary definition of information came from Shannon’s Theorem, on the minimum size of the

communication channel, in mean bits per signal, necessary to faithfully transmit a signal in the
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absence of noise. The theorem was generalised to quantum theory by Schumacher[Sch95, JS94].

Suppose that the sender wishes to use the quantum states ψa to represent messages, and a

given message will occur with probability pa. We will refer to I[ρ] as the Shannon information of

the source. The quantum coding theorem demonstrates that the minimum size of Hilbert space H

that can be used as a communication channel without introducing errors is

Dim(H) = 2S[ρ]

where

ρa = |ψa〉 〈ψa |
ρ =

∑
a

paρa

S[ρ] = −Tr [ρ log2 ρ] (2.3)

By analogy to the representation of messages in bits, a Hilbert space of dimension 2 is defined as

having a capacity of 1 qbit, and a Hilbert space of dimension n, a capacity of log2 n qbits.

If the signal states are all mutually orthogonal

ρaρa′ = δaa′ρ
2
a

then

S[ρ] = −
∑

a

pa log2 pa

If this is the case, then the receiver can, in principle, perform a quantum measurement to determine

exactly which of the signal states was used. This will provide an information gain of exactly the

Shannon information of the source.

However, what if the signal states are not orthogonal? If this is the case, then[Weh78]

S[ρ] < I[ρ]

It would appear that the signals can be sent, without error, down a smaller dimension of Hilbert

space. Unfortunately, as the signal states are not orthogonal, they cannot be unambiguously

determined. We must now see how much information can be extracted from this.

2.2.2 Information Gain

To gain information, the receiver must perform a measurement upon the system. The most general

form of a measurement used in quantum information is the Positive Operator Valued Measure

(POVM)[BGL95]. This differs from the more familiar von Neumann measurement, which involves

the set of projection operators |a〉 〈a | for which 〈a |a0〉 = δaa′ and

∑
a

|a〉 〈a | = I
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is the identity operator. The probability of obtaining outcome a, from an initial state ρ is given

by

pa = Tr [ρ |a〉 〈a |]

This is not the most general way of obtaining a probability measure from the density matrix. To

produce a set of outcomes a, with probabilities pa according to the formula

pa = Tr [ρAa]

the conditions upon the set of operators Aa are that they be positive, so that

〈w |Aa |w〉 ≥ 0

for all states |w〉, and that the set of operators sums to the identity
∑

a

Aa = I

For example, consider a spin-1
2 system, with spin-up and spin-down states |0〉,|1〉 respectively and

the superpositions |u〉 = 1p
2

(|0〉+ |1〉) |v〉 = 1p
2

(|0〉 − |1〉) then the following operators

A1 =
1
2
|0〉 〈0 |

A2 =
1
2
|1〉 〈1 |

A3 =
1
2
|u〉 〈u |

A4 =
1
2
|v〉 〈v |

form a POVM. A given POVM can be implemented in many different ways4, but will typically

require an auxiliary system whose state will be changed by the measurement.

The signal states ρb occur with probability pb. Using the same expression for information gain

as in Equation 2.2 so we can now apply Bayes’s rule as before, with

p(a|b) = Tr [Aaρb]

to give the probability, on finding outcome a, that the original signal state was b

p(b|a) =
p(b)Tr [Aaρb]

p(a)
(2.4)

We now define the relative information, information gain and mutual information as before

I(β|a) =
∑

b

P (b|a) log2 P (b|a)

∆Ia(β) = I(β|a)− I(β)

〈I(β|a)〉 =
∑

a

P (a)I(β|a) = I(β|α)

〈∆I(β|a)〉 =
∑

a

P (a)∆Ia(β) = I(α : β)

4The example given here could be implemented by, on each run of the experiment, a random choice of whether

to measure the 0-1 basis or u-v basis. This will require a correlation to a second system which generates the random

choice. In general a POVM will be implemented by a von Neumann measurement on an extended Hilbert space of

the system and an auxiliary[Per90, Per93].
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It can be shown that the maximum gain in Shannon information, known as the Kholevo bound,

for the receiver is the Schumacher information[Kho73, HJS+96, SW97, Kho98].

I[α : β] ≤ S[ρ]

So, although by using non-orthogonal states the messages can be compressed into a smaller volume,

the information that can be retrieved by the receiver is reduced by exactly the same amount.

2.2.3 Quantum Information Quantities

The information quantity that results from a measurement is still defined in terms of Shannon

information on the measurement outcomes. This depends upon the particular measurement that is

performed. We would like to generalise the joint, conditional, and mutual information to quantum

systems, and to preserve the relationships:

S[A|B] = S[AB]− S[B]

S[B|A] = S[AB]− S[A]

S[A : B] = S[AB]− S[A]− S[B]

This generalisation[AC95, Gru99, SW00, CN01, and references therein] is defined from the joint

density matrix of two quantum systems ρAB .

ρA = TrB [ρAB ]

ρB = TrA [ρAB ]

S[AB] = −Tr [ρAB log2 ρAB ]

S[A] = −Tr [ρAB log2(ρA ⊗ 1B)]

= −Tr [ρAlog2ρA]

S[B] = −Tr [ρAB log2(1A ⊗ ρB)]

= −Tr [ρBlog2ρB ]

S[A|B] = −Tr
[
ρAB log2 ρAjB

]

S[B|A] = −Tr
[
ρAB log2 ρBjA

]

S[A : B] = −Tr [ρAB log2 ρA:B ] (2.5)

where the matrices5

ρAjB = lim
n!1

[
ρ
1/n
AB (1A ⊗ ρB)¡1/n

]n

5Where all the density matrices commute, then

ρA|B = ρAB (ρA ⊗ 1B)−1

ρA:B = ρAB (ρA ⊗ ρB)−1

in close analogy to the classical probability functions
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ρBjA = lim
n!1

[
ρ
1/n
AB (ρA ⊗ 1B)¡1/n

]n

ρA:B = lim
n!1

[
ρ
1/n
AB (ρA ⊗ ρB)¡1/n

]n

However, these quantities display significantly different properties from Shannon information.

The most significant result is that it is possible for S[A] > S[AB] or S[B] > S[AB]. This allows

S[A|B], S[B|A] < 0 and −S[A : B] > S[AB] which cannot happen for classical correlations, and

does not happen for the Shannon information quantities that come from a quantum measurement.

A negative conditional information S[A|B] < 0, for example, would appear to imply that, given

perfect knowledge of the state of B, one has ’greater than perfect’ knowledge of the state of A!

The clearest example of this is for the entangled state of two spin- 1
2 particles, with up and

down states represented by 0 and 1:

ψ =
1
2

(|00〉+ |11〉)

This is a pure state, which has

S[AB] = 0

The subsystem density matrices are

ρA =
1
2

(|0〉 〈0 |+ |1〉 〈1 |)

ρB =
1
2

(|0〉 〈0 |+ |1〉 〈1 |)

so that

S[A] = S[B] = 1

The conditional quantum information is then

S[A|B] = S[B|A] = −1

The significance that can be attributed to such a negative conditional information is a matter

of some debate[AC95, AC97, SW00]. We have noted above that the Shannon information of a

measurement on a quantum system does not show such a property. However, the Kholevo bound

would appear to tell us that each of the quantities S[A], S[B] and S[AB] can be the Shannon

information gained from a suitable measurement of the system.

The partial resolution of this problem lies in the fact that, for quantum systems, there exist

joint measurements which cannot be decomposed into separate measurements upon individual sys-

tems. These joint measurements may yield more information than can be obtained for separable

measurements even in the absence of entanglement[GP99, Mas00, BDF+99, Mar01]. In terms

of measurements the quantities of S[AB], S[A] and S[B] may refer to information gains from

mutually incompatible experimental arrangements. There is correspondingly no single experimen-

tal arrangement for which the resulting Shannon information will produce a negative conditional

information.
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2.2.4 Measurement

We have so far reviewed the existence of the various quantities that are associated with information

in a quantum system. However, we have not really considered what we mean by the information

gained from a quantum measurement.

In a classical system, the most general consideration is to assume a space of states (whether dis-

crete digital messages or a continuous distribution over a phase space) and probability distribution

over those states.

There are two questions that may be asked of such a system:

1. What is the probability distribution?

2. What is the state of a given system?

If we wish to determine the probability distribution, the means of doing this is to measure

the state of a large number of equivalently prepared systems, and as the number of experiments

increases the relative frequencies of the states approaches the probability distribution. So the

measurement procedure to determine the state of the given system is the same as that used to

determine the probability distribution.

For a quantum system, we must assume a Hilbert space of states, and a probability distribution

over those states. Ideally we would like to ask the same two questions:

1. What is the probability distribution?

2. What is the state of a given system?

However, we find we a problem. The complete statistical properties of the system are given by the

density matrix

ρ =
∑

a

paρa

where the state ρa occurs with probability pa. We can determine the value of this density matrix

by an informationally complete measurement6. However, this measurement does not necessarily

tell us the states ρa or pa. The reason for this is that the quantum density matrix does not have a

unique decomposition. A given density matrix ρ could have been constructed in an infinite number

of ways. For example, the following ensembles defined upon a spin- 1
2 system

Ensemble 1

ρ1 = |0〉 〈0 |
ρ2 = |1〉 〈1 |

6An informationally complete measurement is one whose statistical outcomes uniquely defines the density matrix.

Such a measurement can only be performed using a POVM[BGL95, Chapter V]. A single experiment, naturally,

cannot reveal the state of the density matrix. It is only in the limit of an infinite number of experiments the relative

frequencies of the outcomes uniquely identifies the density matrix.
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p1 =
1
2

p2 =
1
2

Ensemble 2

ρA = |u〉 〈u |
ρB = |v〉 〈v |
pA =

1
2

pB =
1
2

Ensemble 3

ρ1 = |0〉 〈0 |
ρ2 = |1〉 〈1 |
ρA = |u〉 〈u |
ρB = |v〉 〈v |
p1 =

1
4

p2 =
1
4

pA =
1
4

pB =
1
4

with |u〉 = 1p
2

(|0〉+ |1〉) |v〉 = 1p
2

(|0〉 − |1〉), all produce the density matrix ρ = 1
2I, where I is

the identity.

The informationally complete measurement will reveal the value of an unknown density matrix,

but will not even reveal the probability distribution of the states that compose the density matrix,

unless the different ρa states happen to be orthogonal, and so form the basis which diagonalises

the density matrix (and even in this case, an observer who is ignorant of the fact that the signal

states have this property will not be able to discover it).

To answer the second question it is necessary to have some a priori knowledge of the ’signal

states’ ρa. In the absence of a priori knowledge, the quantum information gain from a measurement

has no objective significance. Consider a measurement in the basis |0〉 〈0 |, |1〉 〈1 |. With Ensemble

1, the measurement reveals the actual state of the system. With Ensemble 2, the measurement

causes a wavefunction collapse, the outcome of which tells us nothing of original state of the system,

and destroys all record of it. Without the knowledge of which ensemble we were performing the

measurement upon we are unable to know how to interpret the outcome of the measurement.

This differs from the classical measurement situation. In a classical measurement we can refine

our partitioning of phase space, until in the limit we obtain the probability density over the whole
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of the phase space. If the classical observer starts assuming an incorrect probability distribution for

the states, he can discover the fact. By refining his measurement and repeatedly applying Bayes’s

rule, the initially subjective assessment of the probability density asymptotically approaches the

actual probability density. The initially subjective character of the information eventually becomes

an objective property of the ensemble.

In a quantum system, there is no measurement able to distinguish between different distribu-

tions that combine to form the same density matrix. The observer will never be able to determine

which of the ensembles was the actual one. If he has assumed the correct signal states ρa, then he

may discover if his probabilities are incorrect. However, if his initial assumption about the signal

states going into the density matrix are incorrect, he may never discover this.

It might be argued that the complete absence of a priori knowledge is equivalent to an isotropic

distribution over the Bloch sphere7. An observer using such a distribution could certainly devise a

optimal measurement, in terms of information gain[Dav78]. Although some information might be

gained, the a posteriori probabilities, calculated from Bayes’s rule, would be distributions over the

Bloch sphere, conditional upon the outcome of the experiments. However, the outcomes of such a

measurement would be same for each of the three ensembles above. The a posteriori probabilities

continue to represent an assessment of the observer’s knowledge, rather than a property of the

ensemble of the systems.

On the other hand, we are not at liberty to argue that only the density matrix is of significance.

If we are in possession of a priori knowledge of the states composing the density matrix, we will

construct very different measurements to optimise our information gain, depending upon that

knowledge. The optimal measurement for Ensemble 2 is of the projectors |u〉 〈u | and |v〉 〈v |, while

for Ensemble 3 a POVM must be used involving all four projectors. All of these differ from the

optimal measurement for an isotropic distribution8.

2.3 Quantum Measurement

So far we have made a critical assumption in analysing the information gained from measurements,

namely that measurements have well defined outcomes, and that we have a clear understanding

of when and how a measurement has occurred. This is, of course, a deeply controversial aspect of

the interpretation of quantum theory. Information theory has, occasionally, been applied to the

problem[DG73, Chapter III, for example], but usually this is only in the context of a predefined

theory of measurement (thus, in [DG73] the use of information theory is justified within the context

of the Many-World Interpretation).

7The Bloch sphere represents a pure state in a Hilbert space of dimension 2 by a point on a unit sphere.
8Recent work[BZ99, BZ00a, Hal00, BZ00b] by Bruckner and Zeilinger criticises the use of Shannon-Schumacher

information measures in quantum theory, on similar grounds. While their suggested replacement of total information

has some interesting properties, it appears to be concerned exclusively with the density matrix itself, rather than

the states that are combined to construct the density matrix.
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In [AC97], Cerf and Adami argue that the properties of the quantum information relationships

in Equation 2.5 can, in themselves, be used to resolve the measurement problem. We will now

examine the problems in their argument.

Let us start by considering a measurement of a quantum system in a statistical mixture of

orthogonal states |ψn〉 〈ψn | with statistical weights wn, so that

ρ =
∑

n

wn |ψn〉 〈ψn |

In this case, the density matrix is actually constructed from the |ψn〉 states, rather than some

other mixture leading to the same statistical state. We now introduce a measuring device, initially

in the state |φ0〉 and an interaction between system and device

|ψnφ0〉 → |ψnφn〉 (2.6)

This interaction leads the joint density matrix to evolve from

ρn ⊗ |φ0〉 〈φ0 |

to

ρ0 =
∑

n

wn |ψnφn〉 〈ψnφn | (2.7)

We can now consistently interpret the density matrix ρ0 as a statistical mixture of the states |ψnφn〉
occurring with probability wn. In particular, when the measuring device is in the particular state

|ψn〉 then the observed system is in the state |φn〉. The interaction in 2.6 above is the correct one

to measure the quantity defined by the |ψn〉 states.

Unfortunately, the linearity of quantum evolution now leads us to the measurement problem

when the initial state of the system is not initial in a mixture of eigenstates of the observable.

Supposing the initial state is

|Ψ〉 =
∑

n

αn |ψn〉

(where, for later convenience, we choose |αn|2 = wn), then the measurement interaction leads to a

state

|ΨΦ〉 =
∑

n

αn |ψnφn〉 (2.8)

This is a pure state, not a statistical mixture. Such an entangled superposition of states cannot

be interpreted as being in a mixture of states, as there are observable consequences of interference

between the states in the superposition.

To complete the measurement it is necessary that some form of non-unitary projection takes

place, where the state |ΨΦ〉 is replaced by a statistical mixture of the |ψnφn〉 states, each occurring

randomly with probability |αn|2 = wn.
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Information From the point of view of information theory, the density matrix in Equation 2.7

has a information content of

S1[φ] = S1[ψ] = S1[φ, ψ] = −
∑

n

wn log2 wn = S0

S1[φ|ψ] = S1[ψ|φ] = 0

S1[φ : ψ] = −S0

The conditional information being zero indicates that, given the knowledge of the state of the

measuring apparatus we have perfect knowledge of the state of the measured system, and the

mutual information indicates a maximum level of correlation between the two systems.

For the superposition in Equation 2.8, the information content is

S2[φ, ψ] = 0

S2[φ] = S2[ψ] = S0

S2[φ|ψ] = S2[ψ|φ] = −S0

S2[φ : ψ] = −2S0

We now have situation where the knowledge of the state of the combined system is perfect, while,

apparently, the knowledge of the individual systems is completely unknown. This leads to a

negative conditional information - which has no classical meaning, and a correlation that is twice

the maximum that can be achieved with classical systems.

[AC95] do not attempt to interpret these terms. Instead they now introduce a third system,

that ’observes’ the measuring device. If we represent this by |ξ〉, this leads to the state

|ΨΦΞ〉 =
∑

n

αn |ψnφnξn〉 (2.9)

Now, it would appear we have simply added to the problem as our third system is part of the

superposition. However, by generalising the quantum information terms to three systems, [AC95]

derive the quantities

S3[ξ] = S3[φ] = S3[ξ, φ] = −
∑

n

wn log2 wn = S0

S3[ξ|φ] = S3[φ|ξ] = 0

S3[ξ : φ] = −S0

This shows the same relationships between the second ’observer’ and the measuring device as we

saw initially between the measuring device and the observed system when the system was in a

statistical state. This essentially leads [AC95] to believe they can interpret the situation described

after the second interaction as a classical correlation between the observer and the measuring

device.

[AC95] do not claim that they have introduced a non-unitary wavefunction collapse, nor do they

believe they are using a ’Many-Worlds’ interpretation. What has happened is that, by considering
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only two, out of three, subsystems in the superposition, they have traced over the third system

(the original, ’observed’ system), and produced a density matrix

Trψ [|ΨΦΞ〉 〈ΨΦΞ |] =
∑

n

wn |φnξn〉 〈φnξn | (2.10)

which has the same form as the classically correlated density matrix. They argue that the origi-

nal, fundamentally quantum systems |Ψ〉 are always unobservable, and it is only the correlations

between ourselves (systems |Ξ〉) and our measuring devices (systems |Φ〉) that are accessible to us.

They argue that there is no need for a wavefunction collapse to occur to introduce a probabilistic

uncertainty into the unitary evolution of the Schrödinger equation. It is the occurrence of the

negative conditional information

S3[ψ|φ, ξ] = −S0

that introduces the randomness to quantum measurements. This negative conditional information

allows the Φ, Ξ system to have an uncertainty (non-zero information), even while the overall state

has no uncertainty

S3[ψ, φ, ξ] = S3[ψ|φ, ξ] + S3[φ, ξ] = 0

The basic problem with this argument is the assumption that when we have an apparently

classically correlated density matrix, such as in Equation 2.7 above, we can automatically interpret

it as actually being a classical correlation. In fact, we can only do this if we know that it is actually

constructed from a statistical ensemble of correlated states. As we have seen above, the quantum

density matrix does not have a unique decomposition and so could have been constructed out of

many different ensembles. These ensembles may be constructed with superpositions, entangled

states, or even, as with the density matrix in Equation 2.10, without involving ensembles at all.

What [AC95] have shown is the practical difficulty of finding any observable consequences of the

entangled superposition, as the results of a measurement upon the density matrix in Equation 2.10

are identical to those that would occur from measurements upon a statistical mixture of classically

correlated states. However, to even make this statement, we have to have assumed that we know

when a measurement has occurred in a quantum system, and this is precisely the point at issue9.

When applying this to Schrödinger ’s cat, treating Φ as the cat and Ξ as the human observer,

they say

The observer notices that the cat is either dead or alive and thus the observer’s

own state becomes classically correlated with that of the cat, although in reality, the

entire system (including atom . . . the cat and the observer) is in a pure entangled state.

It is practically impossible, although not in principle, to undo this observation i.e. to

resuscitate the cat
9Their argument is essentially a minimum version of the decoherence approach to the measurement

problem[Zur91]. For a particularly sharp criticism of why this approach does not even begin to address the problem,

see [Alb92, Chapter 4, footnote 16]
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Unfortunately this does not work. The statement that the observer notices that the cat is either

alive or dead must presume that it is actually the case that the cat is either alive or dead. That

is, in each experimental realisation of the situation there is a matter of fact about whether the cat

is alive or dead. However, if this was the case, that the cat is, in fact, either alive or dead, then

the system would not described by the superposition at all. It is because a superposition cannot

readily be interpreted as a mixture of states that the measurement problem arises in the first place.

[AC97]’s resolution depends upon their being able make the assumption that a superposition

does, in fact, represent a statistical mixture of the cat being in alive and dead states, with it being

a matter of fact, in each experimental realisation, which state the cat is in. Only then can we

interpret the reduced density matrix (2.10) as a statistical correlation.

There are, in principle, observable consequences of the system actually being in the superpo-

sition, that depend upon the co-existence of all branches of the superposition10. Although these

consequences are, in practice, very difficult to observe, we cannot simply trace over part of the

system, and assume we have a classical correlation in the remainder. Indeed, the ’resuscitation’ of

the cat alluded to requires the use of all branches of the superposition. This includes the branch

in which the observer sees the cat alive as well as the branch in which the observer sees the cat as

dead. If both branches of the superposition contribute to the resuscitation of the cat, then both

must be equally ’real’.

To understand the density matrix (2.10) as a classical correlation, we must interpret it as

meaning that, in each experiment, the observer actually sees a cat as being alive or actually sees

the cat as being dead. How are we then to understand the status of the unobserved outcome,

the other branch of the superposition, that enables us to resuscitate the cat, without using the

Many-Worlds interpretation? To make the situation even more difficult, we need only note that,

not only can we resuscitate the Φ cat, we can also, in principle at least, restore the Ψ system to a

reference state, leaving the system in the state

ψ0φ0

∑
n

αnξn

The observer is now effectively in a superposition of having observed the cat alive and observed the

cat dead (while the cat itself is alive and well)! Now the superposition of the states of the observer is

quite different from a statistical mixture. We cannot assume the observer either remembers the cat

being alive or remembers the cat being, nor can we assume that the observer must have ’forgotten’

whether the cat was alive or dead. The future behaviour of the observer will be influenced by

elements of the superposition that depend upon his having remembered both. [AC95] must allow

states like this, in principle, but offer no means of understanding what such a state could possibly

mean.
10We will be examining some of these in more detail in Chapter 3.
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2.4 Summary

The Shannon information plays several different roles in a classical system. It derives it’s primary

operational significance as a measure of the capacity, in bits, a communication channel must have

to faithfully transmit a ensemble of different messages. Having been so defined, it becomes possible

to extend the definition to joint, conditional and mutual information. These terms can be used

to describe the information shared between two different systems - such as a message sender and

message receiver - or can be used to describe the changes in information an observer has on making

measurements upon a classical system. In all cases, however, the concept essentially presupposes

that the system is in a definite state that is revealed upon measurement.

For quantum systems the interpretation of information is more complex. Within the context of

communication, Schumacher generalises Shannon’s theorem to derive the capacity of a quantum

communication channel and the Kholevo bound demonstrates that this is the most information

the receiver can acquire about the message sent.

However, when considering the information of unknown quantum states the situation is less

clear. Unlike the classical case there is no unique decomposition of the statistical state (density

matrix) into a probability distribution over individual states. A measurement is no longer neces-

sarily revealing a pre-existing state. In this context, finally, we note that the very application of

information to a quantum system presupposes that we have a well-defined measuring process.
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Chapter 3

Active Information and

Interference

In Chapter 2 we reviewed the status of information gain from a quantum measurement. This

assumed that measurements have outcomes, a distinct problem in quantum theory.

We now look at the concept of ’active information’ as a means of addressing the measurement

problem within the Bohm approach to quantum theory. This approach has been recently criticised

as part of a series of though experiments attempting to explore the relationship between information

and interference. These thought experiments rely upon the use of ’one-bit detectors’ or ’Welcher-

weg’ detectors, in the two slit interference experiment. In this Chapter we will show why these

criticisms are invalid, and use the thought experiment to illustrate the nature of active information.

This will also clarify the relationship between information and interference.

Section 3.1 will introduce the Bohm interpretation and highlight it’s key features. This will

introduce the concept of active information. The role of active information in resolving the mea-

surement problem will be briefly treated.

Section 3.2 analyses the which-path interferometer. It has been argued that there is a comple-

mentary relationship between the information obtained from a measurement of the path taken by

an atom travelling through the interferometer, and the interference fringes that may be observed

when the atom emerges from the interferometer. As part of the development of this argument, a

quantum optical cavity has been proposed as a form of which path, or ’welcher-weg’ measuring

device. The use of this device plays a key role in ’quantum eraser’ experiments and in the criticism

of the Bohm trajectories. We will therefore examine carefully how the ’welcher-weg’ devices affect

the interferometer.

Finally, in Section 3.3 we will argue that the manner in which the term ’information’ has been

used in the which path interferometers is ambiguous. It is not information in the sense of Chapter

2. Rather, it appears to be assuming that a quantum measurement reveals deeper properties of a

system than are contained in the quantum description, and this is the information revealed by the
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measurement.

We will show that this assumption is essential to the interpretation of the ’welcher-weg’ devices

as reliable which path detectors. However, it will be shown that the manner in which this interpre-

tation is applied to the ’welcher-weg’ devices is not tenable, and this is the reason they are supposed

to disagree with the trajectories of the Bohm approach. By contrast, the concept of active infor-

mation, in the Bohm interpretation, does provide a consistent interpretation of the interferometer,

and this can clarify the relationship between which path measurements and interference.

3.1 The Quantum Potential as an Information Potential

The Bohm interpretation of quantum mechanics[Boh52a, Boh52b, BH87, BHK87, BH93, Hol93,

Bel87] can be derived from the polar decomposition of the wave function of the system, Ψ = ReiS ,

which is inserted into the Schrödinger equation1

i
∂Ψ
∂t

=
(
−∇

2

2m
+ V

)
Ψ

yielding two equations, one that corresponds to the conservation of probability, and the other, a

modified Hamilton-Jacobi equation:

−∂S

∂t
=

(∇S)2

2m
+ V − ∇2R

2mR
(3.1)

This equation can be interpreted in the same manner as a classical Hamilton- Jacobi, describing

an ensemble of particle trajectories, with momentum p = ∇S, subject to the classical potential

V and a new quantum potential Q = −r2R
2mR . The quantum potential, Q, is responsible for all

the non-classical features of the particle motion. It can be shown that, provided the particle

trajectories are distributed with weight R2 over a set of initial conditions, the weighted distribution

of these trajectories as the system evolves will match the statistical results obtained from the usual

quantum formalism. It should be noted that although the quantum Hamilton-Jacobi equation can

be regarded as a return to a classical deterministic theory, the quantum potential has a number of

the non-classical features that make the theory very different from any classical theory. We should

regard Q as being a new quality of global energy that augments the kinetic and classical potential

energy to ensure the conservation of energy at the quantum level. Of particular importance are

the properties of non-locality and form-dependence.

3.1.1 Non-locality

Perhaps the most surprising feature of the Bohm approach is the appearance of non-locality. This

feature can be clearly seen when the above equations are generalised to describe more than one par-

ticle. In this case the polar decomposition of Ψ(x1, x2, · · · , xN ) = R(x1, x2, · · · , xN )eiS(x1,x2,¢¢¢,xN )

produces a quantum potential, Qi, for each particle given by:
1We set h̄ = 1
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Qi = −∇
2
i R(x1, x2, · · · , xN )

2mR(x1, x2, · · · , xN )

This means that the quantum potential on a given particle i will, in general, depend on the

instantaneous positions of all the other particle in the system. Thus an external interaction with

one particle may have a non-local effect upon the trajectories of all the other particles in the

system. In other words groups of particles in an entangled state are, in this sense, non-separable.

In separable states, the overall wave function is a product of individual wave functions.

For example, when one of the particles, say particle 1, is separable from the rest, we can write

Ψ(x1, x2, · · · , xN ) = φ(x1)ξ(x2, · · · , xN ). In this case R(x1, x2, · · · , xN ) = R1(x1)R2¢¢¢N (x2, · · · , xN ),

and therefore:

Q1 = −∇
2
1R1(x1)R2¢¢¢N (x2, · · · , xN )

2mR1(x1)R2¢¢¢N (x2, · · · , xN )
= −∇

2
1R1(x1)

2mR1(x1)

In a separable state, the quantum potential does not depend on the position of the other

particles in the system. Thus the quantum potential only has non-local effects for entangled

states.

3.1.2 Form dependence

We now want to focus on one feature that led Bohm & Hiley [BH93] to propose that the quantum

potential can be interpreted as an ‘information potential’. As we have seen above the quantum

potential is derived from the R-field of the solution to the appropriate Schrödinger equation. The

R-field is essentially the amplitude of the quantum field Ψ . However, the quantum potential is

not dependant upon the amplitude of this field (i.e., the intensity of the R-field), but only upon

its form. This means that multiplication of R by a constant has no effect upon the value of Q.

Thus the quantum potential may have a significant effect upon the motion of a particle even where

the value of R is close to zero. One implication of this is that the quantum potential can produce

strong effects even for particles separated by a large distance. It is this feature that accounts for

the long- range EPRB-type correlation upon which teleportation relies.

It is this form-dependence (amongst others things) that led Bohm & Hiley [BH84, BH93] to

suggest that the quantum potential should be interpreted as an information potential. Here the

word ‘information’ signifies the action of forming or bringing order into something. Thus the

proposal is that the quantum potential captures a dynamic, self-organising feature that is at the

heart of a quantum process.

For many-body systems, this organisation involves a non-local correlation of the motion of all

the bodies in the entangled state, which are all being simultaneously organised by the collective

R-field. In this situation they can be said to be drawing upon a common pool of information

encoded in the entangled wave function. The informational, rather than mechanical, nature of

this potential begins to explain why the quantum potential is not definable in the 3-dimensional
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physical space of classical potentials but needs a 3N-dimensional configuration space. When one

of the particles is in a separable state, that particle will no longer have access to this common pool

of information, and will therefore act independently of all the other particles in the group (and

vice versa). In this case, the configuration space of the independent particle will be isomorphic to

physical space, and its activity will be localised in space-time.

3.1.3 Active, Passive and Inactive Information

In order to discuss how and what information is playing a role in the system, we must distinguish

between the notions of active, passive and inactive information. All three play a central role in our

discussion of teleportation. Where a system is described by a superposition Ψ(x) = Ψa(x)+Ψb(x),

and Ψa(x) and Ψb(x) are non-overlapping wavepackets, then

Ψa(x)Ψb(x) ≈ 0

for all values of x. We will refer to this as superorthogonality. The actual particle position will

be located within either one or the other of the wavepackets. The effect of the quantum potential

upon the particle trajectory will then depend only upon the form of the wavepacket that contains

the particle. We say that the information associated with this wavepacket is active, while it

is passive for the other packet. If we bring these wavepackets together, so that they overlap,

the previously passive information will become active again, and the recombination will induce

complex interference effects on the particle trajectory.

Now let us see how the notion of information accounts for measurement in the Bohm interpreta-

tion. Consider a two-body entangled state, such as Ψ(x1, x2) = φa(x1)ξa(x2)+φb(x1)ξb(x2), where

the active information depends upon the simultaneous position of both particle 1 and particle 2.

If the φa and φb are overlapping wave functions, but the ξa and ξb are non-overlapping, and the

actual position of particle 2 is contained in just one wavepacket, say ξa, the active information will

be contained only in φa(x1)ξa(x2), the information in the other branch will be passive. Therefore

only the φa(x1) wavepacket will have an active effect upon the trajectory of particle 1. In other

words although φa and φb are both non-zero in the vicinity of particle 1, the fact that particle 2

is in ξa(x2) will mean that only φa(x1)ξa(x2) is active, and thus particle 1 will only be affected by

φa(x1).

If φa(x1) and φb(x1) are separated, particle 1 will always be found within the location of φa(x1).

The position of particle 2 may therefore be regarded as providing an accurate measurement of the

position of particle 1. Should the φa and φb now be brought back to overlap each other, the sepa-

ration of the wavepackets of particle 2 will continue to ensure that only the information described

by φa(x1)ξa(x2) will be active. To restore activity to the passive branches of the superposition

requires that both φa(x1) and φb(x1) and ξa(x2) and ξb(x2) be simultaneously brought back into

overlapping positions. If the ξ(x2) represents a thermodynamic, macroscopic device, with many

degrees of freedom, and/or interactions with the environment, this will not be realistically possible.
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If it is never possible to reverse all the processes then the information in the other branch may

be said to be inactive (or perhaps better still ‘deactivated’), as there is no feasible mechanism by

which it may become active again. This process replaces the collapse of the wave function in the

usual approach. For the application of these ideas to the problem of teleportation in quantum

information, see Appendix A and [HM99].

Rather than see the trajectory as a particle, one may regard it as the ’center of activity’ of the

information in the wavefunction. This avoids the tendency to see the particle as a wholly distinct

object to the wavefunction. As the two feature can never be separated from each other, it is better

to see them as two different aspects of a single process.

In some respects the ’center of activity’ behaves in a similar manner to the ’point of execution’

in a computer program. The ’point of execution’ determines which portion of the computer code

is being read and acted upon. As the information in that code is activated, the ’point of execution’

moves on to the next portion of the program. However, the information read in the program will

determine where in the program the point of execution moves to. In the quantum process, it is the

center of activity that determines which portion of the information in the wavefunction is active.

Conversely, the activity of the information directs the movement of the ’center’.

The activity of information, however, differs from the computer in two ways. Firstly, the

wavefunction itself is evolving, whereas a computer program is unlikely to change it’s own coding

(although this is possible). Secondly, when two quantum systems interact, this is quite unlike

any interaction between two computer programs. The sharing of information in entangled systems

means that the ’center of activity’ is in the joint configuration space of both systems. The movement

of the center of activity through one system depends instantaneously upon the information that is

active in the other system, and vice versa. This is considerably more powerful than classical parallel

processing and may well be related to the increased power of quantum computers[Joz96, Joz97].

3.2 Information and interference

In a series of papers[ESSW92, ESSW93, Scu98], the Bohm interpretation has been criticised as

’metaphysical’,’surrealistic’ and even ’dangerous’, on the basis of a thought experiment exploiting

’one-bit’ welcher-weg, or which-way, detectors in the two slit interference experiment2. Although

these criticisms have been partially discussed elsewhere[DHS93, DFGZ93, AV96, Cun98, CHM00],

there are a number of features to this that have not been discussed. The role of information,

and active information has certainly not been discussed in this context. The thought experiment

itself arises in the context of a number of similar experiments in quantum optics [SZ97, Chapter

20] which attempt to apply complementarity to information and interference fringes[WZ79] and

the ’delayed choice’ effect[Whe82] in the two-slit interference experiment. It is therefore useful to

2Similar criticisms were raised by [Gri99] in the context of the Consistent Histories interpretation of quantum

theory. A full examination of Consistent Histories lies outside the scope of this thesis. However, an analysis of

Griffiths argument, from[HM00] is reproduced in Appendix B.
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examine how the problems of measurement, information and active information are applied to this

situation.

To properly consider the issues raised by this thought-experiment, it will be necessary to re-

examine the basis of the two-slit experiment. This will be considered in Subsection 3.2.1. The

role of information in destroying the interference effects will be reviewed in Subsection 3.2.2. The

analysis of this is traditionally based upon the exchange of momentum with a detector destroying

the interference. We will find that the quantum optics welcher-weg devices, which we will discuss

in Subsection 3.2.3 do not exhibit such an exchange of momentum, but still destroy the interfer-

ence. Subsection 3.2.4 then examines the Bohm trajectories for this experiment, and shows why

[ESSW92] regard them as ’surreal’.

3.2.1 The basic interferometer

We will now describe the basic interferometer arrangement in Figure 3.1. An atom, of position

Figure 3.1: Basic Interferometer

co-ordinate x, is described by the narrow wavepacket

ψ(x, t)

. At time t = t0, it is in the initial state

ψ(x, t0)
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and passes through a beam splitter at B, and at t = t1 has divided into the states

ψ(x, t1) =
1√
2

(ψu(x, t1) + ψd(x, t1))

where ψu(x) is the wavepacket travelling in the upper branch of the interferometer, and ψd(x) is

the wavepacket in the lower branch.

After t = t1, the wavepackets are reflected so that at t = t2 they are moving back towards each

other

ψ(x, t2) =
1√
2

(ψu(x, t2) + ψd(x, t2))

They recombine at t = t3, in the region R, where the atoms location is recorded on a screen. The

probability distribution across the screen is then

|ψ(x, t3)|2 =
1
2

(
|ψu(x, t3)|2 + |ψd(x, t3)|2 + ψu(x, t3)⁄ψd(x, t3) + ψu(x, t3)ψu(x, t3)⁄

)

In Figure 3.1 we have also included phase shifters at locations Pu and Pd, in the two arms of

the interferometer. These may be controlled to create a variable phase shift of φu or φd in the

respective wavepacket. The settings of these phase shifters will play an important role in the later

discussion, but for the moment, they will both be assumed to be set to a phase shift of zero, and

thus have no effect upon the experiment.

If we apply the polar decomposition ψ = ReiS to this, we obtain

|ψ(x, t3)|2 =
1
2

(
Ru(x, t3)2 + Rd(x, t3)2 + 2Ru(x, t3)Rd(x, t3) cos(Su(x, t3)− Sd(x, t3))

)

We can simplify this by assuming the beam splitter divides the wavepackets equally, so that in the

center of the interference region

Ru(x, t3) = Rd(x, t3) = R(x, t3)

and

|ψ(x, t3)|2 = R(x, t3)2 (1 + cos(∆S(x, t3)))

where ∆S(x, t3) = Su(x, t3)− Sd(x, t3).

The cosine of the phase produces the characteristic interference fringes. Had we blocked one

of the paths (u, for example) we would have found the probability distribution was R(x, t3)2. The

probability distribution is not simply the sum of the probability distributions from each path. The

superposition of states given by ψ(x, t3) cannot be simply interpreted as half the time the atom

goes down the u path, and half the time going down the d path.

Now let us consider the addition to the interferometer of the phase shifters in each of the paths.

These could be implemented by simply fine tuning the length of each arm. The u path is shifted

by a phase φu and the d path by φd. The effect on the interference pattern is simply to modify

the cosine term to

cos (∆S(x, t3) + (φu − φd))
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Now we have

|ψ(x, t3)|2 = R(x, t3)2 (1 + cos (∆S(x, t3) + (φu − φd)))

At the points xn, where

∆S(xn, t3) + (φu − φd) =
π

2
+ nπ

then the value of |ψ(xn, t3)|2 = 0 ie. there is no possibility of the atom being located at that point.

The important point to note is that the values of xn are determined by the values of both φu and

φd, that is by the setting of the phase shifters in both arms of the interferometer.

This emphasises the point that we are unable to regard the superposition of states in ψ(x, t1)

as simply representing a situation where, in half the cases the atom travels the d-path, and in half

the cases the u-path. Not only is the interference pattern not simply the sum of the probability

distribution from each of the two paths, but critically, the location of the nodes in the interference

pattern depends upon the settings of instruments in both paths.

A simplistic way of stating this is in terms of what the atom ’knows’ it should do when reaching

the screen. If the atom proceeds down one path, and the other path is blocked, it can arrive at

locations that are forbidden if the other path is not blocked. How does the atom ’know’ whether

the other path is blocked or not? The phase shifters demonstrate that, not only must the atom

’know’ whether or not the paths are blocked, but even if they are not blocked, the very locations

which are forbidden to it depend upon the atom ’knowing’ the values of the phase shifts in both

arms. If the atom only travels down one path or the other, how is it to ’know’ the phase shift in

the other path?

This is a generic property of superpositions. We cannot interpret these as a statistical mixture

as this implies that in each experiment either one or the other possibility is realized while we can

always exhibit interference effects which depend upon both of the elements of the superposition.

3.2.2 Which way information

We now turn to the attempts to measure which way the atom went. The interference pattern

builds up from the ensemble of individual atoms reaching particular locations of the screen. If

we could know which path the atom takes, we could separate the ensemble of all the atoms that

travelled down the u-branch from the atoms travelling down the d-branch, and this might shed

light upon the questions raised by the introduction of the phase shifters.

As is well known, however, the attempt to measure the path taken by the atom destroys

the interference pattern recorded on the screen. The paradigm explanation[Fey63, Chapter 37],

originally due to Heisenberg, involves scattering a photon from the atom, to show it’s location.

To be able to determine which path the atom takes, the wavelength of the photon must be less

than the separation of the paths. However, this scattering changes the momentum of the atom,

according to the uncertainty relationship ∆x∆p ≥ h̄. This random addition to the wavefunction

of the atom destroys the phase coherence of the two branches of the superposition and so destroys
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the interference. The measurement of the atoms location changes the quantum system from the

pure state ψ(x, t1) to the statistical density matrix

ρ =
1
2

(|ψu(x, t1)〉 〈ψu(x, t1) |+ |ψd(x, t1)〉 〈ψd(x, t1) |)

where |ψu(x, t1)〉 〈ψu(x, t1) | is correlated to the measurement outcome locating the atom in the

u-path, and |ψd(x, t1)〉 〈ψd(x, t1) | is correlated to the atom located in the d-path. The values of

the phase shifters is now irrelevant, and no interference occurs in the region R. We will not now

find any inconsistency in treating the system as a statistical mixture.

Quantity of information The information obtained from the position measurement above is

’all or nothing’. We either do not measure the path, and get an interference pattern, or we measure

it, and lose the interference pattern. This often leads to a tendency to adopt the language where

the quantum object is said to behave in a ’particlelike’ manner, when the which path information

is measured, and in a ’wavelike’ manner when the interference is observed.

In [WZ79] the experiment is refined by varying the certainty one has about the path taken by

the atom. There are several different methods proposed for this, but the most efficient suggested

is equivalent to changing the beam splitter in Figure 3.1, such that the atomic beam emerges with

state

ψ0(x, t2) = αψu(x, t2) + βψd(x, t2)

where |α|2 + |β|2 = 1. Wootters and Zurek deem the information ’lacking’ about the path of the

atom to be

IWZ = −pu log2 pu − pd log2 pd (3.2)

where pu = |α|2 and pd = |β|2.
The resulting interference pattern on the screen is given by

|ψ0(x, t3)|2 = R(x, t3)2 (1 + 2
√

pupd cos(∆S(x, t3) + (φu − φd) + θ))

where θ is the relative phase between the complex numbers α and β. If the value of pu approaches

zero or one, then the atom will always go down one arm or the other. IWZ goes to zero, so

there is no information lacking about the path of the atom, but the interference term disappears.

The largest interference term occurs when pu = pd = 1
2 , for which IWZ = − log2 2 represents a

maximum lack of information. It is noticeable that this experiment does not actually involve a

measurement at all. However, Wootters and Zurek show that, for a given size of the interference

term, the information that can be obtained from any measurement is no more than IWZ . In this

respect, the complementarity between the interference and IWZ is equivalent to the equality in the

uncertainty relationship ∆x∆p ≥ h̄. What is significant here is that in Wootters and Zurek’s view

it is not the momentum transfer that destroys the interference effects, rather it is the information

we have about the path of the atom.
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Finally we can consider Wheeler’s delayed choice experiment[Whe82] where the screen may

be removed from Figure 3.1 and detectors are placed at D1 and D2, as in Figure 3.2. Now the

wavepackets continue through the interference region, and become separate again at t = t4

ψ(x, t4) = (ψu(x, t4) + ψd(x, t4))

A detection at D1 of the wavepacket ψd(x, t4) is interpreted as detecting that the atom went

through the d-path in the interferometer. Now, the choice of whether to insert the screen can

Figure 3.2: Which-path delayed choice

be made after the wavepackets have entered the interferometer arms (and even passed the phase

shifters). The choice as to whether we obtain interference (the atom is a wave in both arms of

the interferometer) or information about which path the atom took (the atom is a particle in one

branch of the interferometer) is delayed until after the quantum system has actually entered the

interferometer.

3.2.3 Welcher-weg devices

In a series of articles[ESW91, ESSW92, SZ97, and references within], it has been suggested that

the which-path information can be measured by using certain quantum optical devices, which we

will follow the authors of these papers in referring to as ’welcher-weg’ (German for ’which way’)

devices. These devices do not make a random momentum transfer to the atom and so it is argued

they represent an advance in the understanding of the which path interferometer. It is the use of
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these devices that is essential to understanding the ’quantum eraser’ experiments and the criticism

of the Bohm interpretation.

There are three key physical processes that are involved in these experiments, all involving a

two-level circular Rydberg atom. This is an atom whose outer shell contains only a single electron,

the state of which can be treated effectively as in a hydrogen atom. The two levels refers to the

ground (|g〉) and first excited (|e〉) state of the outer shell electron, which differ by the energy

∆ER. The processes to which this atom is subjected are:

• Timed laser pulses producing Rabi oscillations.

• Interaction with a single mode micromaser cavity.

• Selective ionization

Full details of these processes can be found in[AE74, MW95, SZ97]. We will describe only their

essential features here.

Rabi oscillations The atom rapidly passes through an intense electromagnetic field, oscillat-

ing at a single frequency. This can be achieved using a pulsed laser, and the intensity of the

electromagnetic field allows it to be treated as a semiclassical perturbation on the atomic states.

The frequency ωR of the laser is tuned to the energy gap between the ground and first excited

state of the atom ∆ER = h̄ωR. The effect upon the atomic state is to produce a superposition of

ground and excited states

α(t) |g〉+ β(t) |e〉 (3.3)

whose equation of motion is

dα(t)
dt

= ı
R

2
β(t)

dβ(t)
dt

= ı
R

2
α(t)

where R is the Rabi oscillation term. This factor is a constant, whose exact value is a function

of the overlap integral between the |g〉 and |e〉 states under the influence of perturbation field of

the laser.

The solutions to these coupled equations are

α(t) = α(0) cos
(

Rt

2

)
+ ıβ(0) sin

(
Rt

2

)

β(t) = β(0) cos
(

Rt

2

)
+ ıα(0) sin

(
Rt

2

)

If we time the length of the pulse carefully, we can manipulate the excitation of the atom. Of

particular importance is the π pulse, where Rt = π, as this has the effect of flipping the atomic

state so that |e〉 → ı |g〉 and |g〉 → ı |e〉.
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Single Mode Cavity The Rabi oscillations are produced from an intense, semiclassical elec-

tromagnetic field. The single mode cavity involves the interaction of the atom with a field with

very few photon states excited. The operation is essentially based upon the Jaynes-Cumming

model[CJ63].

Instead of using a laser pulse, the circular Rydberg atom is sent through a high quality mi-

crowave cavity, which is tuned to have the same fundamental resonant frequency ωR as the atom.

We will describe the state of the electromagnetic field in the cavity using the Fock state basis,

giving the number of photons excited in the cavity at the fundamental frequency. Where there are

n photons in the cavity, it’s quantum state is described as |n〉.
If the length of time the atom spends in the cavity is carefully controlled, there are only three

interactions we need to consider for the purposes of the experiments involved:

|g0〉 → |g0〉
|g1〉 → |e0〉
|e0〉 → |g1〉 (3.4)

If an excited atom goes through an unexcited cavity, it decays to the ground state, and the h̄ωR

energy excites the first photon state of the cavity. If the atom in the ground state goes through a

cavity with a single photon excitation, the energy is absorbed, exciting the atom and de-exciting

the cavity. If neither atom nor cavity are excited, then no changes can take place.

The most important property of these devices is that, if an excited atom passes through the

cavity, it deposits its energy into the photon field with certainty. As we shall see, it is this that

leads [ESSW92] to describe them as ’welcher-weg’ devices 3.

Selective Ionization State selective field ionization passes the atom through a electric field that

is sufficiently strong to ionize the atom when the electron in the excited state, but insufficiently

strong to ionize the atom with the electron in the ground state. The ionized atom and electron are

then detected by some amplification process. For completeness, the ionization of the excited state

may be followed by a second selective ionization and detection, capable of ionizing the ground

state. As long as the first ionization is very efficient, a reliable measurement of the ground or first

excited state will have taken place.

[ESSW92] now proposed the experiment where a welcher-weg cavity is placed in each arm of

the delayed choice interferometer, as shown in Figure 3.3. The atomic wavepackets, initially in the

ground state, are given a π pulse just before entering the interferometer. The electron excitation is

passed on to the cavity field mode, leaving the cavity excited. With the screen missing, the atomic

wavepacket is then detected at either D1 or D2. The location of the photon, in the upper or lower

cavity, is detected by sending another (’probe’) atom, initially in the ground state, through the

cavity and performing a state selective ionization upon it.
3A second property of interest is that the interaction of the atom and cavity has negligible effect upon the

momentum of the atomic wavepacket.
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Figure 3.3: Welcher-weg cavities

If we follow the quantum evolution of this system, we have:

1. At t = t0, the atom has not yet encountered the beam splitter, but is π pulsed into the

excited state |e〉, while the u-path and d-path cavities are in the ground state (n = 0).

|Ψ(t0)〉 = |ψ(t0), e, 0u, 0d〉

2. The atom passes into the interferometer and the wavepacket is split into the two arms:

|Ψ(t1)〉 =
1√
2

(|ψu(t1), e, 0u, 0d〉+ |ψd(t1), e, 0u, 0d〉)

3. The wavepackets encounter the welcher-weg cavities. The excited electron energy is deposited

in the photon field of the relevant cavity

|Ψ(t2)〉 =
1√
2

(|ψu(t2), g, 1u, 0d〉+ |ψd(t2), g, 0u, 1d〉)

4. The wavepackets pass through the interference region. The triggering of the measuring device

D1 collapses the state to

|ψd(t4), g, 0u, 1d〉

while triggering D2 produces

|ψu(t4), g, 1u, 0d〉
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5. Probe atoms are sent through the welcher-weg cavities. If D1 was triggered, then the d-path

probe atom will absorb a photon and be detected by the selective ionization, while a D2

detector triggering will be accompanied by the u-path probe atom absorbing a photon and

being ionized.

This certainly appears to confirm Wheeler’s interpretation of the delayed choice path measurement.

If the atom travels down the d-path, it deposits the energy in the d-cavity, passes through the

interference region and is detected by D1. Conversely, if the atom travels down the u-path, it

deposits the energy in the u-cavity, passes through the interference region and is detected by D2.



Figure 3.4: Surrealistic Trajectories

Delayed choice trajectories

Let us first note that trajectories of the kind shown in Figure 3.4 have long been known in the Bohm

interpretation, and discussed in the context of the Wheeler delayed choice experiment[DHP79,

Bel87]. However, these discussions of the delayed choice experiment suggested that the effect

occurs only when the path of the atom is not measured in the arm of the interferometer. If

detectors are placed in the interferometer arms, then the result should be the trajectories shown

in Figure 3.3. It is then argued that the detection of an atom at D1 in the arrangement of Figure

3.2 cannot be taken to imply the atom actually travelled down the d-path, except through the

application of a ’naive classical picture’[Bel87, Chapter 14] and the possibility of observing the

interference fringes in the region R undermine any such picture.

By adding their welcher-weg devices [ESSW92] appear to destroy this position. Two properties

emerge. Firstly, the location of the atom in the detectors coincides with the location of the photon

in the cavity, in the manner shown in Figure 3.3. This is taken to confirm Wheeler’s assumption

that atom did indeed pass down the d-path when detected in the D1 detector, and the u-path

when detected in the D2 detector. Secondly, the Bohm trajectories still are able to behave in

the manner shown in Figure 3.4 despite the measurement of the atom’s path by the welcher-weg

devices. [ESSW92] conclude that ”the Bohm trajectory goes through one [path], but the atom

[goes] through the other”, the Bohm trajectories are ”at variance with the observed track of the

particle” and are therefore ”surrealistic”. In [ESSW93] they say
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If the trajectories . . . have no relation to the phenomena, in particular to the de-

tected path of the particle, then their reality remains metaphysical, just like the reality

of the ether of Maxwellian electrodynamics

and emphasise

this trajectory can be macroscopically at variance with the detected, actual way

through the interferometer

We will consider the basis of [ESSW92]’s arguments in detail in the next Section. Before we

do this, however, we will need to examine in more detail how the Bohm trajectories behave in the

interferometer, and how the ionization of the probe atoms become correlated to the detectors.

The cavity field

The treatment of the field theory in the Bohm interpretation is developed in [BHK87, BH93,

Hol93, Kal94]. In essence, while the particle theory given in Section 3.1 has a particle position

co-ordinate x, guided by the wavefunction, the field theory supposes that there is an actual field,

whose evolution is guided by a wavefunctional. This wavefunctional is the same as the probability

amplitude for a particular field configuration in the standard approach to quantum field theory.

For a single mode cavity, such as the welcher-weg devices, this takes a particularly simple

form and has been examined in great detail in [DL94a, DL94b]. The Bohm field configuration

can be represented by a single co-ordinate (the field mode co-ordinate for the resonant cavity

mode) and the wavefunctional reduces to a wavepacket representing the probability amplitude for

the field mode co-ordinate. As long as one remembers that the ’beable’ is field mode co-ordinate

representing a distribution of an actual field, rather than a localised position co-ordinate, the single

mode cavity may be treated in much the same manner as the particle theory in Section 3.1.

For the cavity Cu, therefore, we need only introduce a mode co-ordinate qu, the wavefunctional

for the cavity mode ground state |0u〉 and for the first excited state |1u〉. Similarly, for the cavity

Cd we introduce qd, |0d〉 and |1d〉. It is important to note that, although the states |0〉 and |1〉 are

orthogonal, they are not superorthogonal.

Basic interferometer

We now review the evolution of the Bohm trajectories in the experimental arrangements in Figures

3.1 and 3.2

As in Subsection 3.2.1, the atomic wavefunction, in state ψ(x, t1) divides at the beam splitter.

The trajectory of the atom will move into one or the other of the wavepackets ψu(x, t2) or ψd(x, t2).

As the wavepackets move through the interferometer arms, the information in only one wavepacket

is active and the other is passive. However, when the interference region is reached, the two

wavepackets begin to overlap and the previously passive information becomes active once more.

Now the information from both arms of the interferometer is active upon the particle trajectory.
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This allows the phase shift information φu and φd from both phase shifters to guide the path of the

trajectory, and the interference pattern can show nodes at locations dependant upon the setting

of both devices.

If the screen is not present, the wavepackets separate again. As both wavepackets were active in

the interference region, there is no guarantee that the trajectory emerges in the same wavepacket

in which it entered. In fact, for the simplest situations, the trajectory will never be in the same

wavepacket! The trajectories follow the type of paths in Figure 3.4[DHP79, Bel80].

Which way measurement

We now add conventional measuring devices to the arms of the interferometer. These will be

described by a co-ordinate (yu or yd) and a wavefunction, initially in state ξ0(y). When the

wavepacket of the atom moves through the arm of the interferometer, it interacts with the mea-

suring device to change it’s state to ξ1(y):

|ψu(t2)ξ0(yu)ξ0(yd)〉 → |ψu(t2)ξ1(yu)ξ0(yd)〉
|ψd(t2)ξ0(yu)ξ0(yd)〉 → |ψd(t2)ξ0(yu)ξ1(yd)〉

The states ξ0 and ξ1 are superorthogonal and represent macroscopically distinct outcomes of the

measurement (such as pointer readings). We will assume further that the measuring device has

large number of constituents and interacts with the environment, in such a manner as to destroy

any phase coherence between the ξ0 and ξ1 states.

Now, the state of the atom and measuring devices after the interaction is

1√
2

(|ψu(t2)ξ1(yu)ξ0(yd)〉+ |ψd(t2)ξ0(yu)ξ1(yd)〉)

As described in Section 3.1, if the atom trajectory is located in the u-path of the interferometer,

then only the information in ψu(x, t2) is active. The yu co-ordinate moves into the ξ1 wavepacket

and the yd co-ordinate remains in the ξ0 wavepacket. We describe the information in the other

half of the superposition as passive. Had the atom trajectory initially entered the d-path, yd would

have entered the ξ1 wavepacket.

When the atomic wavepackets encounter the interference region, the ψu(x, t3) and ψd(x, t3)

begin to overlap. However the measuring device states are still superorthogonal. The information

in the other branch of the superposition does not become active again. Consequently, the atom

trajectory continues to be acted upon only by the wavepacket it entered at the start of the in-

terferometer. No interference effects occur in the R region, and, if the screen is not present, the

u-path trajectory passes through the interference region to encounter the detector at D2 while the

d-path trajectory goes through to the detector at D1. The superorthogonality of the measuring

devices ensures that the trajectories do not reflect in the interference region, and the results of the

measuring devices in the arms of the interferometer agree with the detectors at D1 and D2 that

the atom has followed the paths indicated in Figure 3.3.
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Although it is the superorthogonality that plays the key role in producing the measurement

outcome, we will now say a few words about the role of the loss of phase coherence. As the

macroscopic ξ states interact with the environment, further entangled correlations build up with

large numbers of environmental particles. This leads to habitual decoherence in the macroscopic

states. From the point of view of active information, however, what is most significant is that

if even a single one of the environmental particles is correlated to the measuring device states

in superorthogonal states, then the passive information in the measuring device states cannot be

made active again. As an example, if the measuring device at ξ1 leads to the scattering of an atom

in the air to a different place than if the device had been at ξ0, then the passive information in

ξ0 cannot be made active unless the atom in the air is also brought back into overlapping states.

As, for all practical purposes, the interaction with the environment makes this impossible, we can

describe the information in the ’empty’ wavepacket as inactive, or deactivated.

Welcher weg devices

We are now in a position to examine the experimentum crucis of [ESSW92]. In place of the

measuring devices above, we have optical cavities in the paths of the interferometer. At t = t2 the

wavefunction is

|Ψ(t2)〉 =
1√
2

(|ψu(t2), g, 1u, 0d〉+ |ψd(t2), g, 0u, 1d〉)

Now if the atom trajectory is in the u-path, then in cavity Cu the information in |1u〉 is active, and

the field mode co-ordinate qu will behave as a single photon state. In cavity Cd, it is |0d〉 that is

active, so qd behaves as a ground state. Had the atom trajectory been in the d-path, the situation

would be reversed.

Now, unlike the measurement above, the welcher-weg states are not superorthogonal, and

undergo no loss of phase coherence. When the atomic wavepackets enter the overlap region R, all

the wavepackets in the state

|Ψ(t3)〉 =
1√
2

(|ψu(t3), g, 1u, 0d〉+ |ψd(t3), g, 0u, 1d〉)

are overlapping. The trajectory co-ordinates for x, qu and qd are in non-zero portions of the

wavefunction for both branches of the superposition. The previously passive information becomes

active again. It is this that allows the atomic trajectories to become reflected in R and emerge

from this region in the opposite wavepacket to the one they entered, as in Figure 3.4.

If the atom trajectory emerges from R in the wavepacket ψu(x, t4), then the information in the

d-path wavepacket becomes passive again. This includes the activity of the qu and qd field mode

co-ordinates, so only the |1u〉 information is active for qu and the |0d〉 information is active for qd.

The Cu cavity therefore appears to hold the photon, while the Cd cavity appears empty. This will

be the case even if the atom trajectory originally passed through the Cd cavity.

Finally, the atom trajectory encounters the detector either at D1 or D2 and the probe atoms

are sent through the cavities. The probe atom that is sent through the cavity for which the |1〉

47



information is active will be excited, and ionized, and the correlation between the excited state

ionization and the atom detectors will appear to be that of Figure 3.3. This shows how, despite

having trajectories of the form in Figure 3.4, the Bohm approach produces exactly the same

experimentally verifiable predictions as quantum theory.

3.2.5 Conclusion

The Bohm interpretation clearly provides an internally consistent means for describing the in-

terference experiments, and produces all the same observable predictions as ’standard’ quantum

mechanics. Nevertheless, [ESSW92, ESSW93, Scu98] argue that the trajectories followed by the

atom in the Bohm interpretation are

macroscopically at variance with the detected, actual way through the interferom-

eter

The claim is that the location of the photon in the welcher-weg device, after the atomic wavepackets

have left the region R tell us the way the atom actually went. If this claim is true the Bohm trajec-

tories cannot be an accurate representation of what actually happened. As we have established the

internal consistency of the Bohm interpretation, we must now examine the internal consistency of

[ESSW92]’s interpretation of their welcher-weg devices. This examination should not be from the

point of view of the Bohm interpretation, but rather from the point of view of ’standard’ quantum

mechanics.

It should be clear from the discussion above that the essential difference between the standard

measuring device, for which the Bohm trajectories behave as in Figure 3.3, and the welcher-weg

devices, is that in the cavities there is a coherent overlap between the excited and ground states

throughout the experiment. This is the property of the welcher-weg devices that allows the Bohm

trajectories to reverse in the region R and produce the effect that [ESSW92] call ’surrealistic’. If,

for example, the probe atoms were sent though the cavities and ionized before the interference

region was encountered, then the ionization and detection process would lead to a loss of phase

coherence, or in the Bohm approach a deactivation of information in the passive wavepacket. In

this case the Bohm trajectories could not reverse, and the trajectories would follow the paths

in 3.3. We must therefore investigate the consequences of the persistence of phase coherence in

standard quantum theory, to see how this affects our understanding of the welcher-weg devices.

3.3 Information and which path measurements

First we will examine the nature of the which-path ’information’ obtained in the conventional

measurement. This, it turns out, is not information in the sense we encountered it in Chapter 2,

although it is related to the Shannon information from a measurement. The information can be

interpreted in two ways: as a strictly operational term, referring to the observable consequences
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of a conventional measurement, or as revealing a pre-existing situation or property of the object

being measured. The second interpretation implicity assumes that there is a deeper level of reality

than that provided by the quantum mechanical description of a system.

We will then consider the quantum cavity ”welcher-weg” devices. These do not fulfil the criteria

of a conventional measuring device and there are observable consequences of this. The interpre-

tation [ESSW92] place upon the information derived from their ”welcher-weg” devices is that of

revealing pre-existing properties of the atom, namely it’s location. To make this interpretation,

they must implicitly make two assumptions - that quantum objects, such as atoms or photons,

possess an actual location, beyond the quantum description, and that the atom can only interact

with the welcher-weg devices if the actual location of the atom is within the device.

However, we will demonstrate that the continued existence of phase coherence between the

welcher-weg states does allow the observation of interference effects, and these make the combi-

nation of these two assumptions untenable. The welcher-weg devices cannot be interpreted as

providing a reliable measurement of the location of the atom. This conclusion will be from the

perspective of ’standard’ quantum mechanics. We will therefore find that [ESSW92]’s argument

that the location of the ionized electron reveals the actual path taken by the atom (and contra-

dicting the Bohm trajectories) is not supported by standard quantum mechanics, and cannot be

consistently sustained. Finally, we will show how the interference effects observed can be naturally

explained within the context of active information.

3.3.1 Which path information

In [WZ79] it is suggested that it is not the momentum transfer of a scattered photon that destroys

interference fringes, but rather the gathering of information about the path taken by the atom.

This would appear to be supported by the welcher-weg devices, as these do not significantly affect

the momentum of the atom. However, we need to consider what we mean by the information

gathered. We will assume the beam splitter can be adjusted, as in Subsection 3.2.2, to produce

the state

ψ0(x, t2) = αψu(x, t2) + βψd(x, t2)

The information term IWZ in Equation 3.2, although expressed as a Shannon information,

does not correspond to the quantum information terms in Chapter 2. The atom is initially in the

pure state ψ(x, t0). It continues to be in a pure state after it has split into two separate beams

in the interferometer. The Schumacher information of the atomic state is zero. This represents

a complete knowledge of the system. If we calculate the information gain from a conventional

measurement of the path taken by the atom, we find that it is always zero. The initial state is

ψ(x, t0) with probability one. The measurement of the location of the particle has outcomes u and

d with probabilities |α|2 and |β|2, so Bayes’s rule (Equation 2.4) produces the trivial result

p(ψ|u) = jαj21
jαj2 = 1
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p(ψ|d) = jβj21
jβj2 = 1

We saw this in Subsection 2.2.4. The information gain from a measurement relates to the

selection of particular state from a statistical mixture of states. As this particular situation is not

described by a mixture5 but by a pure state, there is no uncertainty. Information revealed by the

measurement is not a gain of information about the quantum properties of the system.

From the perspective of information gain, only if the wavepacket

ψ0(x, t1) = αψu(x, t1) + βψd(x, t1)

was replaced by the statistical mixture

ρ0 = |α|2 |ψu(x, t1)〉 〈ψu(x, t1) |+ |β|2 |ψd(x, t1)〉 〈ψd(x, t1) |

of |ψu(t1)〉 and |ψd(t1)〉 states, would there be an information gain IWZ from a measurement, but

in this case there would be no interference.

Information about the measurement How can we understand IWZ when the initial state

is a pure state? There are two possible ways of doing this. The first method is to note that

IWZ does represent the Shannon uncertainty about the outcome of the measurement. Let us be

very careful what we mean here. We are proposing that the measuring device is a conventionally

defined, macroscopic object, with an observable degree of freedom, such as the pointer on a meter.

IWZ represents our prior ignorance of the state the pointer will be in when the measurement is

concluded. Naturally, this assumes the measurement problem is solved so that it is meaningful to

talk about the pointer being in a state, and the measurement being concluded.

This remains a controversial topic in the interpretation of quantum theory. However, it is

generally accepted, and is certainly part of the ’standard’ approach to quantum theory, that

such a measurement involves an amplification of the quantum state to macroscopic levels that

is, for all practical purposes, irreversible, and is accompanied by an irretrievable loss of phase

information between the different measurement outcomes. At the end of such a process, the

entangled state between the measuring device and the measured object can be replaced by a

statistical mixturewithout in any way affecting the future evolution of the experiment. It more or

less follows that it can only be applied to the kind of macroscopically large objects for which a

classical description is valid.

At the end of the measurement, we would know what state the quantum object was in, as a

result of the correlation to the measuring device. However, we could not infer from this that the

quantum object was in that state prior to making the measurement. If we had considered making

a complementary measurement before our path measurement, we could have observed the kind of

interference effects that preclude the assumption that the measured object was in one or the other

state, but that the state was unknown to us.
5Or, equivalently, is described by the trivial mixture, for which p(ψ) = 1
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In this respect we would be viewing the experiment in the manner Bohr[Boh58] appears to

recommend:

all unambiguous use of space-time concepts in the description of atomic phenomena

is confined to the recording of observations which refer to marks on a photographic

plate or to similar practically irreversible amplification effects

From this point of view, the quantity IWZ refers to the properties of the macroscopically observable

measuring device outcomes in the particular experimental arrangement. It does not represent a

statement of the ignorance of the properties of the atom itself. Our knowledge of the state of the

atom, as a quantum object, is already complete (it is in a pure state). It is only the future states

of the measuring device of which we are uncertain.

Information about the atom The second way of viewing IWZ is to suppose that the measuring

device does precisely what it was intended to do - that is, measure the actual location of the atom.

This must assume that the atom does indeed have an actual location, and the measurement reveals

that location. This involves the attribution to the atom of a property (well defined location) which

goes beyond the quantum description of the object.

When we have only the either/or options of designing an interference experiment to test the

wave nature of the quantum object, or a which path experiment to test the particle nature of the

quantum object, the tendency is to talk loosely of the quantum object as being a particle or a

wave depending upon the experimental arrangement. However, the intermediate cases introduced

by [WZ79] make this more difficult, as the object is supposedly manifesting both particlelike and

wavelike properties in the one arrangement:

The sharpness of the interference pattern can be regarded as a measure of how

wavelike the [object] is, and the amount of information we have obtained about the

[object]’s trajectories can be regarded as a measure of how particlelike it is

The problem here is the talk of our possessing information about the trajectory taken. The

normal meaning of this sentence would be clear: it would mean that the object had a well-defined

trajectory, and we had some probabilistic estimate of which path was taken in any given experiment.

This meaning applies even when the ignorance of the path is maximal. This would be the case

where IWZ = 1. In this case, the consistent use of the word information must be taken to mean

that the atom follows the u-path half the time and the d-path the other half the time.

Unfortunately, this is exactly the situation considered in the basic interferometer (Subsection

3.2.1). The proponents of an information-interference complementarity would argue the interfer-

ence fringes appear because we lack information about which path was taken. To consistently

understand the meaning of the word information here, we must assume that the atom does, in fact

follow a particular path, it is just that we ourselves are ignorant of which one. However, the set-

tings of the phase shifters demonstrates that the ultimate location of the atom in the interference
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region depends upon the phase shift in both arms of the interferometer. This leads to the exact

situation Bohr[Boh58] warns against, where

we would, thus, meet with the difficulty: to be obliged to say, on the one hand, that

the [atom] always chooses one of the two ways and, on the other hand, that it behaves

as if it had passed both ways.

3.3.2 Welcher-weg information

We have seen that the interpretation of which-path information in the context of a conventional

quantum measurement is not without it’s problems. We will now consider the welcher-weg devices.

As we have seen, these devices maintain phase coherence between the u- and d-branches of

the superposition, and this phase coherence is essential to produce the ’surrealistic’ behaviour of

the Bohm trajectories. Such phase coherence is a property that a conventional measuring device

must not possess. It is only when the state selective ionization takes place that a conventional

measurement can be said to have taken place. This must be after the atoms have traversed the

interference region R.

When considering the ’which-path’ measurement above, the destruction of phase coherence

in the measurement prevented the occurrence of interference fringes in the region R. With the

welcher-weg devices in place, we similarly lose interference fringes. If we add the phase shifters to

the welcher-weg experiment, this leads to the state at t = t3

|Ψ(t3)00〉 =
1√
2

(
eıφu |ψu(t3), g, 1u, 0d〉+ eıφd |ψd(t3), g, 0u, 1d〉

)

The probability distribution in the interference region turns out to be

|〈x |Ψ(t3)00〉|2 = R(x, t3)2

The values of φu and φd have no effect upon the pattern that emerges if a screen is placed in the

region R.

The reason for this is that the atom is not, in itself, in a pure state. It is in an entangled

superposition with the photon states of the fields in the two micromaser cavities. If one traces over

the entangled degrees of freedom, one obtains the density matrix

1
2

(|ψu(t3)〉 〈ψu(t3) |+ |ψd(t3)〉 〈ψd(t3) |)

which is the same result one would have obtained if there had been a statistical mixture of atomic

wavepackets travelling down one path or the other. As all the observable properties of a system are

derivable from the density matrix there is no way, from measurements performed upon the atom

alone, to distinguish between the state |Ψ(t3)〉 and the statistical mixture.

It might therefore seem unproblematical to argue, as [ESSW93] do, that, although the welcher-

weg devices are not conventional measurement devices, they are still reliable
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Perhaps it is true that it is ”generally conceded that . . . [a measurement] . . . requires

a . . . device which is more or less macroscopic” but our paper disproves this notion

because it clearly shows that one degree of freedom per detector is quite sufficient.

That is the progress represented by the quantum optical which-way detectors.

To [ESSW92, SZ97] the absence of the interference terms demonstrates information has been

gathered, and that correspondingly a measurement must have taken place

As long as no information is available about which alternative has been realized,

interference may be observed. On the other hand, if which-path information is stored

in the cavities, then complementarity does not allow for interference [SZ97, pg574]

However, the tracing over the cavity states does not mean we can simply replace the entangled

superposition with the density matrix, nor does it mean that we can interpret the entangled su-

perposition as a statistical mixture. Although interference properties can no longer be observed

from operations performed upon a single subsystem, we can observe interference effects from corre-

lated measurements upon the entire system because, unlike in a conventional measurement, phase

coherence still exists.

Interference We will now demonstrate how to observe interference effects, by operations per-

formed upon the probe atom, after the atomic wavepacket has reached the region R and after

the probe has left the cavity. The location of the photon excitation energy is determined by the

selective ionization of a probe atom sent through the cavity. The probe atom is initially in the

ground state |gP 〉. The evolution is

|gP 0〉 → |gP 0〉
|gP 1〉 → |eP 0〉

The state of the system becomes

|Ψ(t4)〉 =
1√
2

(
eıφu |ψu(t3), g, ePu , gPd

〉+ eıφd |ψd(t3), g, gPu , ePd
〉) |0u, 0d〉

where |gPu〉 represents the ground state of the u-cavity probe atom etc. The ionization measure-

ment of the probe atoms leads to the states:

|ePu , gPd
〉 ⇒ |ψu(x, t4)〉

|gPu , ePd
〉 ⇒ |ψd(x, t4)〉

which appears to give us a measurement of the atomic position.

We should remember that this is a measurement of the atomic position after the atomic

wavepackets have left the interference region R, and for which there is no disagreement between

the Bohm trajectories and [ESSW92]’s interpretation of the location of the atom.

Let us consider what happens if the screen had been placed in the interference region R. Each

experiment would lead to a scintillation at some point on the screen. By correlating the detected
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position of the atom in the interference region with the outcomes of the probe atom ionizations, we

would select two subensembles, which would each have a distribution of R(x, t3)2. No interference

would be visible.

Now we consider the modification necessary to observe interference. Before ionizing the probe

atoms, let us pass them each through a pulsed laser beam, producing Rabi oscillations, as in

Equation 3.3. The size of the pulse should now be Rt = 1
2π. This produces the rotation

|g〉 → 1√
2

(|g〉+ ı |e〉)

|e〉 → 1√
2

(ı |g〉+ |e〉)

and the state of the system (ignoring the now irrelevant cavity modes) is

|Ψ(t3)0〉 =
1
2

(
eıφu (|ψu(t3), ePu

, gPd
〉+ ı |ψu(t3), gPu

, gPd
〉

+ı |ψu(t3), ePu , ePd
〉 − |ψu(t3), gPu , ePd

〉)
+eıφd (|ψd(t3), gPu

, ePd
〉+ ı |ψd(t3), ePu

, ePd
〉

+ı |ψd(t3), gPu , gPd
〉 − |ψd(t3), ePu , gPd

〉))

which can be rewritten as

|Ψ(t3)0〉 =
(
eıφu |ψu(t3)〉 − eıφd |ψd(t3)〉

) |ePu , gPd
〉 − |gPu , ePd

〉
2

+ı
(
eıφu |ψu(t3)〉+ eıφd |ψd(t3)〉

) |gPu , gPd
〉+ |ePu , ePd

〉
2

Now when the probe atoms are ionized the atomic wavefunction is either

|Ψa(t3)〉 =
1√
2

(
eıφu |ψu(t4)〉 − eıφd |ψd(t4)〉

)

or

|Ψb(t3)〉 =
1√
2

(
eıφu |ψu(t4)〉+ eıφd |ψd(t4)〉

)

The probability distribution in the interference region is now either

|〈x |Ψa(t3)〉|2 =
R(x, t3)2

2
(1 + cos (∆S(x, t3) + (φu − φd)))

or

|〈x |Ψb(t3)〉|2 =
R(x, t3)2

2
(1− cos (∆S(x, t3) + (φu − φd)))

Both of these exhibit interference patterns in the region R and, critically for our understanding

of the situation, the location of the nodes of this interference pattern will be dependant upon the

phase shifts φu and φd in both arms of the interferometer. Had the cavities been conventional

measuring devices, no such interference patterns could have been observed. The mixture of the

two distributions loses the interference pattern. It is only when the results of the probe atom

measurements are correlated to the ensemble of atomic locations that the interference effects can
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be observed. This is characteristic of entangled systems, where the interference can only ever be

seen using correlated or joint measurements6.

It is important to note that the choice of whether or not to pulse the probe atoms with the 1
2π

pulse can be made after the atomic wavepacket has entered into the region R and had it’s location

recorded on a screen. The information about the phase shift settings must somehow be present in

the atom position measurements before we choose whether to pulse the probe atoms or not.

Quantum erasers The arrangement considered here is similar to the quantum eraser experiments[ESW91,

SZ97]. It may be argued that, by pulsing the probe atom, we are ’erasing’ the which path infor-

mation and so restoring the interference. The problem is that this implicitly assumes that there is

a matter of fact about which path the atom took, and that the interference appears only because

the information as to which path the atom took is not stored anywhere.

Thus we read in [SZ97]

As long as no information is available about which alternative has been realized, inter-

ference may be observed

This ignores the fact that it is not simply the existence of interference that is the problem. It

is also a problem that the location of the nodes in the interference pattern so clearly depend upon

the settings of the phase shifters in both arms of the interferometer. If there is a matter of fact

about which path the atom took (”which alternative has been realized”), that is if we understand

the term ’information’ in it’s normal usage, then we cannot account for the fact that the atom

is able to avoid locations that depend upon the configuration of both phase shifters. There is a

fundamental ambiguity in [SZ97]’s description of the quantum ’eraser’: is it only the information

about which path the atom took that is erased, or is it the very fact that the atom did take one

or the other path? We are forced, as Bohr warned, to say the atom travels down one path, but

behaves as if it has travelled down both.

3.3.3 Locality and teleportation

We have established that the welcher-weg devices are not conventional measuring devices and

that there are observable consequences of this. We will now examine what affect this has upon

[ESSW92, ESSW93, Scu98]’s criticism of the Bohm interpretation.

The essence of the argument is that when the photon is found in the cavity the atom must

have travelled down that arm of the interferometer

we do have a framework to talk about path detection: it is based upon the local

interaction of the atom with the . . . resonator, described by standard quantum theory

with its short range interactions only [ESSW93]

6If interference effects could be seen without such correlations, they could be used to violate the no-signalling

theorem, and send signals faster than light.
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The local interaction between the atom and photon, in terms of the Hamiltonian interaction in

the Schrödinger equation, is here being taken to mean that the atom can deposit a photon in the

cavity only if it actually passed through the cavity.

We can identify two key assumptions that are necessary for the interpretation of the welcher-weg

devices as reliable indicators of the actual path of the atom:

1. This storage of information is a valid measurement, even though it is not a conventional

quantum measurement. The atom can only interact with the welcher-weg device, and deposit

a photon in it, if the actual path of the atom passes through the device.

2. The reason the interference pattern initially disappears is because the cavity stores informa-

tion about the path of the atom. The storage of information implies that there is a matter

of fact, which may be unknown, about which path the atom took, in all realizations of the

experiment.

Local interactions Let us consider why these two assumptions are necessary. The first as-

sumption is based upon the local interaction Hamiltonian between the atom and the cavity field.

However, when the atom is in a superposition, as in the interferometer, the effect of this Hamilto-

nian is to produce an entangled correlation between the atom and the cavity mode wavefunctions.

Part of the atomic wavefunction interacts with each cavity wavefunction. If we took the wavefunc-

tion to be a physically real entity, we could not say that the atom in the interferometer interacts

with only one cavity, we would have to say that the atom interacts with both cavities, in all exper-

iments. If this were the case, then could draw no conclusions about the path taken by the atom

from the location of the photon. To reach [ESSW92]’s conclusion we must argue, as is standard,

that the wavefunction is not physically real but

a tool used by theoreticians to arrive at probabilistic predictions

If one is consistently to take this view, however, one must also apply it to the Hamiltonian inter-

action, which acts upon the wavefunctions. Consequently, the first assumption is not based upon

the

local interaction of the atom with the . . . resonator, described by standard quantum

theory with its short range interactions only

In [Scu98], it is stated that

the photon emission process is always (physically and calculationally) driven locally by

the action of the cavity field on the atom

While the emission process can be said to be calculationally driven by the local Hamiltonian acting

upon the wavefunction, to say that it is also physically local is to attribute reality to something

deeper than the quantum level of description. The assumption that finding the photon in one
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cavity implies the atom actually passed through that cavity is an addition to ’standard’ quantum

theory.

In [Scu98], this is made particularly clear. To defend his interpretation of the experiment,

Scully wishes to rule out the transfer of the photon from one cavity to the other, as the atom

traverses the interference region. He argues that the transfer of the photon from one micromaser

cavity to the other, in the Bohm approach, represents a teleportation of energy. This teleportation

of energy is ’qualitatively different’ and a ’stronger type’ of non-locality to that found in EPR

correlations7.

However, the non-locality of entangled photon states in micromaser cavities has been studied

and has even been suggested to be used in quantum teleportation experiments[BDH+93, BDH+94,

CP94]. In Appendix A and [HM99] we can see that the welcher-weg interferometer involves exactly

the same processes as in EPR entanglement and quantum teleportation, whether one uses the Bohm

interpretation or ’standard’ quantum mechanics. Consequently, Scully’s argument that finding the

photon in the cavity after the interference region has been passed implies that the photon must

have been in the cavity before the interference region was encountered is, again, an argument that

is not part of standard quantum mechanics, and rests upon the assumptions above.

Actual paths of atoms The second assumption is necessary to understand the use of the term

’information’. If the welcher-weg device stores information about the actual path of atom, this

implies that there is a matter of fact about which path the atom actually takes. The erasure of

such information would simply affect our, real or potential, knowledge of which path the atom

took, but would not affect the actual reality of which path the atom took.

Can we deny this point without losing the interpretation of the welcher-weg devices as reliable

measuring devices? It would seem not, as if we do deny this we find ourselves contradicting the

first assumption. Suppose we interpret the atom having a path only in the experiments where

the probe atoms are not pulsed, but not having a path when the probe atoms are pulsed (and

interference is observed). The problem lies in the fact that the cavities are themselves simply two

level quantum systems. The location of the photon in the cavity, which is taken to represent the

information about the path the atom travelled, is a quantum state of the optical field. If there is

no matter of fact about whether the atom is taking one path or the other, before the measurement

is performed, there is equally no matter of fact about which cavity contains the photon. The

interaction of the atom with the cavity does not create a matter of fact about whether the atom

took one path or the other, so cannot be said to represent a measurement of the atoms location.

So when would the measurement take place that determines whether there is a matter of fact

about the path of the atom? The answer is only when the probe atom is ionized. In other words,

when a conventional quantum measurement takes place. It is not the welcher-weg devices that are
7[SZ97, Scu98] appears to state that EPR correlations can be attributed to ’common cause’ and there is ’nothing

really shockingly non-local here’. It is precisely because EPR correlations violate the Bell inequalities that this point

of view encounters considerable difficulties[Red87, Bel87].
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measuring the path of the atom at all. There is no matter of fact about whether the atom travelled

down one path or the other, or any matter of fact about which cavity contains the photon, until

the probe atom is ionized, which cannot take place until after the interference region has been

traversed.

It is in the interference region that the atom changes wavepackets and the excitation of the

cavity modes switches from one cavity to the other in the Bohm interpretation. In other words,

if we deny the second assumption, the ’surrealistic’ behaviour of the Bohm trajectories will take

place only if there is no matter of fact about which path the atom took and which cavity contains

the photon. In which case we cannot conclude that the Bohm trajectories are at variance with the

actual path taken by the atom, as it is not meaningful to talk about the actual path of the atom.

Without the second assumption the addition of the welcher-weg devices to Wheeler’s delayed choice

experiment has had no effect on it’s interpretation.

This demonstrates that these two assumptions are essential to the interpretation [ESSW92] wish

to place upon the welcher-weg devices, and further that neither assumption can be considered part

of ’standard’ quantum theory.

Phase coherence As we have seen, to contradict the Bohm trajectories it is essential that

the welcher-weg devices maintain phase coherence in the entangled superposition. However, this

allows us to display interference effects in the location of the atom that depend upon the settings

of phase shifters in both arms of the interferometer. Such a result seems to undermine both of

these assumptions necessary for [ESSW92]’s interpretation of the welcher-weg devices.

We can emphasise this by removing the phase shifter from one arm and the cavity from the

other. Firstly, let us consider the results of ionizing an unpulsed probe atom. If the unpulsed

probe atom is measured to be in the excited state, we would assume that the atom passed down

the arm of the interferometer containing the cavity, while if the probe atom is measured in the

unexcited state, we would assume that the atom passed down the other arm. These would each

occur with a 50% probability. In other words, half of the atoms could not have interacted with

the phase shifter, and the other half could not have interacted with the cavity.

Now let us consider what happens if we pulse the probe atom. We separate the pattern the atom

makes upon the screen in the interference region R into subensembles based upon the outcome

of the ionized probe atom measurement. These subensembles each display the full interference

pattern, the location of whose maxima and minima are determined by the phase shifter. Now, if

we are to assume that the atom did, in fact, travel down only one path or the other, and could

only interact with the device in the path it travelled through we cannot consistently interpret these

results.

Consider the atom that hypothetically travelled down the arm with the cavity. This deposited

a photon in the cavity, and encountered the screen. Neither cavity nor atom interact locally with

the phase shifter. However if we pulse the probe atom, before ionization, the location of the atom
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in the interference region shows fringes which depend upon the setting of the phase shifter, which

neither atom nor cavity interacted with.

If we consider the atom that hypothetically travels down the arm with the phase shifter, we

find the situation even worse. Now the cavity does not interact with the atom and is left empty.

If we send the probe atom through this empty cavity, then pulse and ionize it, the result of this

ionization is to produce interference patterns, with minima at different locations. If the cavity

never interacted with the atom, how can the result of measuring the probe atom possibly be

correlated to the location of the forbidden zones in the interference patterns?

3.3.4 Conclusion

It seems to consistently interpret these results we must either abandon the notion that there is a

matter of fact about which path the atom takes or abandon the idea that the atom can only interact

with the cavity (or phase shifter) if it actually passes down the same arm of the interferometer.

If either of these concepts are abandoned, however, the interpretation [ESSW92] place upon the

welcher-weg devices is untenable. We are therefore forced to conclude that the welcher-weg devices

do not have the properties necessary to be interpreted as detectors.

If we abandon the second assumption, and we apply the information term (3.2) strictly to the

outcomes of experiments, we can make no inference at all about the actual path taken by the atom.

This takes us to the interpretation urged by Bohr[Boh58] and to ’standard’ quantum theory. Here

only the outcomes of macroscopic measurements can be meaningfully discussed. The macroscopic

phenomena emerges, but cannot be interpreted in terms of microscopic processes. In the case of

the experiments above, the interference effects are predicted by the quantum algorithm, but no

explanation is offered, nor can be expected, as to how they arise. In particular, the single mode

cavities are normal quantum devices, and so cannot be interpreted as reliable measuring devices.

If we abandon the first assumption, how do we understand an atom travelling down one path,

but acting as if it travels down both? We can interpret this in terms of the active information in the

Bohm approach. A trajectory travels down one path, but a wavepacket travels down both paths.

The wavepackets interact with the cavity or phase shifter, according to the local Hamiltonian,

regardless of which path the atomic trajectory actually takes.

Now the entangled state means that the information on the setting of the phase shifter is part

of the common pool of information that guides both the atomic trajectory and the cavity field

mode. When the atom enters the interference region, all the branches of the superposition become

active. The behaviour of the atom is now being guided by the information from both wavepackets

and so can be influenced by the phase information from both arms of the interferometer. However,

the field modes are also being guided by this common pool of information.

If the atom encounters the screen at some location x in the interference region, this is amplified

in some, practically irreversible process, that renders all the other information in the entangled

quantum state inactive. The non-local quantum potential connects the motion of the atomic
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trajectory to the motion of the cavity field mode, so now the excitation of the cavity field is

correlated to the position at which the atom was detected. If the atom is detected at the specific

location X, the active wavefunction for the cavity field modes is now proportional to

ψu(X) |1u, 0d〉+ ψd(X) |0u, 1d〉

where ψu(X) and ψd(X) are just the complex numbers corresponding to the probability amplitudes

for the actually detected location of the atom at X. This demonstrates how the information active

upon the cavity field modes is correlated to the measured location of the atom through the non-

locality of the quantum potential.

When the probe atom is sent through the cavity, and pulsed, this can be rewritten as

(
eıφuψu(X, t3)− eıφdψd(X, t3)

) |ePu
, gPd

〉 − |gPu
, ePd

〉
2

+ı
(
eıφuψu(X, t3) + eıφdψd(X, t3)

) |gPu , gPd
〉+ |ePu , ePd

〉
2

The probabilities of detection of the states of the probe atoms are therefore

|ePu , gPd
〉 , |gPu , ePd

〉 ⇒
∣∣eıφuψu(X, t3)− eıφdψd(X, t3)

∣∣2
R(X, t3)2

|gPu , gPd
〉 , |ePu , ePd

〉 ⇒
∣∣eıφuψu(X, t3) + eıφdψd(X, t3)

∣∣2
R(X, t3)2

We can express this as the conditional probabilities

P (ee, gg|X) =
1
2

(1 + cos (∆S(X, t3) + (φu − φd)))

P (eg, ge|X) =
1
2

(1− cos (∆S(X, t3) + (φu − φd)))

Correlating the ionisation state back to the location of the atom, using Bayes’s rule, reveals the

interference fringes

P (X|ee, gg) = R(X, t3)2 (1 + cos (∆S(X, t3) + (φu − φd)))

P (X|eg, ge) = R(X, t3)2 (1− cos (∆S(X, t3) + (φu − φd)))

The interference exists as a correlation between the entangled systems. It is usual to regard this

as the probe atom ionization leading to the selection of subensembles of the atomic position which

display interference. As we can see here, we may equally well have regarded the location of the

atom on the screen as selecting interference subensembles in the ionization of the probe atom. The

phase shifts, φu and φd, do not act upon a single subsystem, rather they form part of the common

pool of information which guides the joint behaviour of both systems.

Information We can modify this to produce a POVM measure of the which-path information

suggested by Wootters and Zurek. Suppose that the resonance between the atomic beam and the

cavities are adjusted, by speeding up the atoms. The transition is no longer

|e0〉 → |g1〉
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but becomes

|e0〉 → α |g1〉+ β |e0〉

We then send the probe atoms through the cavities, and ionise them while the atomic wavepacket

is still in the interferometer. The ionisation of the probe atom can now represent a measurement

of the atom’s location. The POVM is

Au =
1
2
|α|2 |φu〉 〈φu |

Ad =
1
2
|α|2 |φd〉 〈φd |

A0 = |β|2 I

If we represent the location of the Bohm trajectory in the u-branch by Xu and in the d-branch

by Xd, then the initial probabilities are

P (Xu) =
1
2

P (Xd) =
1
2

giving an initial information of I(X) = 1. The probability of the measurement outcomes are

P (u) =
1
2
|α|2

P (d) =
1
2
|α|2

P (0) = |β|2

where P (u) is the probability of the u-probe atom ionising, P (d) the d-probe atom ionising, and

P (0) neither ionising.

If either probe atom ionises, the wavepacket in the other branch is deactivated and the correlated

ensemble of atoms in the region R displays no interference. If neither ionises, both wavepackets

become active again and a full interference pattern occurs. The total pattern is

R(X, t3)2
(
1 + |β|2 cos (∆S(X, t3) + (φu − φd))

)

The conditional probabilities after the measurement are

P (Xu|u) = 1

P (Xd|d) = 1

P (Xu|0) =
1
2

P (Xd|0) =
1
2

so the conditional information on the path (X) taken by the atom after the measurement (M) is

I(X|M) = |β|2

which represents the remaining ignorance of the path taken. The gain in information is

I(X : M) = |α|2
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The size of the interference fringes are given by |β|2 = 1−|α|2. As we gain more information about

the path, we reduce the size of the interference pattern.

The concept of active information, in the Bohm interpretation, thus provides a natural way to

understand the interference effects in the experiments considered.

3.4 Conclusion

.

We have considered in detail the relationship between information and interference proposed

in a series of thought experiments. We have found that the concept of ’information’ being used,

although quantified by a Shannon information term (3.2) is not the same as information used

in the sense of Chapter 2. Shannon information represents a state of ignorance about an actual

state of affairs. The measurement in a quantum system cannot, in standard quantum theory, be

interpreted as revealing a pre-existing state of affairs. If we can interpret the term IWZ at all, in

standard quantum theory, it is as our ignorance of the outcome of a particular measurement. It

cannot be used to make inference about the existence of actual properties of quantum objects.

The measurements that must be used, in standard quantum theory, involve macroscopic devices,

for which the phase coherence between the different measurement outcomes is, for all practical

purposes, destroyed. This allows us to replace the entangled pure state with a statistical density

matrix, without in any way affecting the future behaviour of the system. The welcher-weg devices

suggested by [ESSW92, SZ97] do not have this essential feature. It is entirely because they do not

have this feature that they produce the effects in the quantum eraser experiments[ESW91] and that

appear to contradict the Bohm trajectories. However, the interpretation [ESW91, ESSW92, SZ97]

placed upon the welcher-weg devices is not consistent with standard quantum theory, precisely

because they lack this feature, and it seems difficult how this interpretation can be sustained.

The concept of active information, by contrast, provides a natural way of interpreting these

results. If we measure the path taken by the trajectory, we render the information in the other

wavepacket inactive, because of the superorthogonality of the measuring device states. When

the atom encounters the interference region it is guided only by the information in the one

wavepacket, and so cannot display interference effects that depend upon phase differences between

both branches of the superposition. If we do not measure the path taken, then both wavepackets

are active when the interference region is encountered, and the atomic trajectory is guided by

information from both arms of the interferometer.

Active information is clearly different from that given by IWZ . Here we are not talking about

our ignorance of a particular state of affairs (’information-for-us’), but rather a dynamic principle

of how the experimental configuration acts upon the constituent parts of the quantum system

(’informing the behaviour of the object’). Nevertheless, it connects to our measurements as,

when we gather information-for-us from a measurement, the dynamic information in the other
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wavepackets becomes inactive. This explains why, in the interference experiments, as we increase

our ’information-for-us’ about the path measurements, we increase the deactivation of the infor-

mation about the phase shifts in the arms of the interferometer, and this leads to the attenuation

of the interference fringes. The Bohm interpretation provides a coherent means of understanding

the information-interference complementarity in experiments such as[WZ79], while welcher-weg

devices do not.

63



Chapter 4

Entropy and Szilard’s Engine

In this part of the thesis we will examine the role of information in thermodynamics. We will be

particularly interested in the quantitative connections suggested between the Shannon/Schumacher

measure of information and the thermodynamic entropy. This will require us to analyse in detail

the quantum mechanical version of Szilard’s thought experiment [Szi29] relating entropy to the

information gained by a measurement. This thought experiment has been made the paradigm

argument to demonstrate the information theoretic explanation of entropy[LR90, for example] but

it continues to be strongly criticised[BS95, EN98, EN99, She99].

The structure of this is as follows:

• Chapter 4 will review the attempts that have been made to make a quantitative link between

information and entropy, based upon Maxwell’s Demon and the Szilard Engine. This will be

in some detail, in order to clarify the points that are at issue, and to motivate the analysis in

subsequent Chapters. This will allow us to construct a modified, and quantum mechanical,

form of the ”demonless” Szilard Engine, which will be used to examine the validity of the

various ’resolutions’.

• In Chapter 5 we will make a careful and detailed description of the quantum mechanical

operation of all stages of the Szilard Engine. The only physical restriction we place upon

this Engine is that it must be consistent with a unitary time evolution.

• Chapter 6 adds statistical mechanics to the microscopic motion, by introducing canonical heat

baths and ensembles. No other thermodynamic concepts (such as entropy or free energy) will

be used at this stage. The behaviour of the Engine will then be shown to quite consistent

with the statistical mechanical second law of thermodynamics.

• Thermodynamic concepts are introduced and justified in Chapter 7. It will be shown that

the entropy of the Szilard Engine never decreases. In Chapter 8 the behaviour of the Engine

is generalised to give a complete explanation of why Maxwell’s Demon cannot produce anti-

entropic behaviour. We then show how the other resolutions suggested, where they are
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correct, are contained within our analysis.

Our analysis will show that both the information theoretic resolution, and it’s criticisms, are

incomplete, each concentrating on only part of the problem. When we complete this analysis,

we will show that, despite the formal similarity between Shannon/Schumacher information and

Gibbs/Von Neumann entropy, information theory is both unnecessary and insufficient to give a

complete resolution of the issues raised by the Szilard Engine.

We will now consider the general arguments for a relationship between entropy and information.

Section 4.1 will review one of the issues raised by statistical mechanics, and why this may be

taken to identify entropy with information. Section 4.2 then considers the Szilard Engine version

of Maxwell’s demon. This has been used as the paradigm thought experiment to demonstrate

the relationship between the entropy of a system and the information gained from performing

measurements on the system. The final Subsection will consider a ’demonless’ version of the

thought experiment, used to deny the role of information in understanding the problem. Finally,

in Section 4.3 we review what we believe are the key points of contention in Section 4.2, and how

we propose to address them in Chapters 5 to 8.

4.1 Statistical Entropy

The attempts to derive the phenomenological laws of thermodynamics from classical mechanics

lead to the identification of entropy with a statistical property of a system, rather than an intrinsic

property. Unlike other intensive thermodynamic variables (such as mass or energy) the statistical

entropy is not expressed as the average over some property of the microstates, but is a property of

the averaging process itself. The unfortunate consequence of this is that there may not appear to

be a well-defined entropy of an individual system. So, the Boltzmann entropy of a microstate SB =

klnW depends upon a particular (and possibly arbitrary) partitioning of phase space, while the

Gibbs entropy SG = −k
∫

p ln p depends upon the inclusion of the microstate in a ’representative’

(and possibly arbitrary) ensemble. If we were to choose to describe the partition of phase space

differently, or include the same microstate in a different ensemble, we would ascribe a different

entropy to it.

Attempting to understand how something as fundamental as entropy could be so apparently

arbitrary has lead many to suggest that entropy, and it’s increase, represents a measure of our

ignorance about the exact microstate of the individual system:

the idea of dissipation of energy depends on the extent of our knowledge . . . [it] is not

a property of things in themselves, but only in relation to the mind which perceives

them[DD85, pg 3, quoting Maxwell]

irreversibility is a consequence of the explicit introduction of ignorance into the funda-

mental laws [Bor49]
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The entropy of a thermodynamic system is a measure of the degree of ignorance of a

person whose sole knowledge about its microstate consists of the values of the macro-

scopic quantities . . . which define its thermodynamic state [Jay79]

What has happened, and this is very subtle, is that my knowledge of the possible

locations of the molecule has changed . . . the less information we have about a state,

the higher the entropy [Fey99]

How this ignorance arises, whether it is a subjective or objective property, and why or how

it increases with time have been argued in many ways. For example, it is often suggested that

the ignorance arises because of the large number of microstates available to macroscopic bodies,

and the difficulty of physically determining exactly which microstate the body is in. Similarly, the

growth of entropy with time is then identified with the difficulty of following the exact trajectories

of a large number of interacting bodies.

A frequent criticism that is raised against this interpretation is that it seems to be implying

that the large number of irreversible processes that surround us (gas diffuses, ice melts, the Sun

shines) are illusory and occur only because of our lack of detailed knowledge of the exact microstate

of the gas, ice cube, or star:

it is clearly absurd to believe that pennies fall or molecules collide in a random fashion

because we do not know the initial conditions, and that they would do otherwise if some

demon were to give their secrets away to us [Pop56]

The discussions and criticisms of this point of view is too large to fully review here [Pop57,

Pop74, LT79, DD85, LR90, Red95, Bri96]. Nor will we be dealing with the problem of the origin of

irreversibility [HPMZ94, Alb94, Uff01]. Instead we will concentrate on a quantitative link between

knowledge (information) and entropy. In particular we will be considering the issues raised by the

following problem:

If entropy is a measure of ignorance, and information is a measure of lack of ignorance,

how is it that entropy increases with time, while our information, or knowledge, also

increases with time?

If we cannot follow the exact microstates of a system, it may appear that our information about

the system is decreasing. The knowledge we have about a system, at some given point in time,

when defined in terms of coarse-grained ’observational states’[Pen70], will provide less and less

information about the system as time progresses, due to coarse-grained ’mixing’. This decrease in

information will be identical (with a sign change) to the increase in the coarse-grained entropy of

the system.

On the other hand, the problem arises as we are constantly increasing our knowledge, or

information, by observing the world around us. Each observation we make provides us with

new information that we did not possess at the earlier time. Does this process of acquiring new
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information reduce the entropy of the world, and should this be regarded as an apparent violation

of the second law of thermodynamics? This is the key paradox which needs to be investigated.

We will quantify our knowledge by using the Shannon-Schumacher measure of information ob-

tained from measurements we perform. The Gibbs-von Neumann entropy is identical in form to this

measure, and so will be used for the thermodynamic entropy (we will avoid using ’coarse-grained’

entropy as we will be dealing with microscopic systems for which ’observational states’ cannot be

sensibly defined). We now need to consider how the gain in information from a measurement can

be related to the change in entropy of the system that is measured.

4.2 Maxwell’s Demon

When we measure a system, we only gain information about it if it was possible for the measurement

to have had several different outcomes. In the case of a thermodynamic ensemble, the measurement

amounts to the selection of subensembles. The potentially anti-entropic nature of such a selection

was first suggested by Maxwell[LR90, and references therein] when he proposed a sorting demon

that would, by opening and closing a shutter at appropriate times, allow a temperature difference

to develop between two boxes containing gases initially at the same temperature. Once such a

temperature difference develops heat can be allowed to flow back from the hotter to the colder,

via a Carnot cycle, turning some of it into work in the process. As energy is extracted from the

system, in the form of work, the two gases will cool down. The result would be in violation of the

Kelvin statement of the second law of thermodynamics:

No process is possible whose sole result is the complete conversion of heat into work.

There have been many variations upon this theme, and attempts to resolve the apparent ’para-

dox’. ’Demonless’ versions like Smoluchowski’s trapdoor, or Feynman’s ratchet [Fey63] emphasise

the manner in which thermal fluctuations develop in the physical mechanism designed to effect

the sorting, and prevent the mechanism from operating. A quite different approach was started

by Szilard[Szi29] which will concern us here.

The Szilard Engine (Figure 4.1) consists of a single atom (G) confined within a tube of volume

V . The tube is in constant contact with a heat bath at temperature TG, providing a source of

energy for the random, thermal kinetic motion of the atom. At some point a piston (P) is inserted

in the center of the tube, trapping the atom upon one side or the other, or confining it to a volume

V/2. If we now attach a pulley and weight (W) to the piston, we may use the collision of the atom

against the piston to assist us in moving the piston and lifting the weight. If we consider this as

the expansion of a gas from a volume V/2 to V then the isothermal work which may be extracted

in this manner is kTG ln 2. At the end of the procedure the atom again occupies the full volume of

the tube V and the piston may be reinserted into the center. It appears we have extracted work

from heat, in violation of the second law of thermodynamics. This is the essence of the Szilard

Paradox.
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Figure 4.1: The Szilard Engine

Szilard argued that the problem lay in determining upon which side of the piston the atom

was located. Without this information, the pulley and weight cannot be connected up to the

piston in the correct manner. Having eliminated all other sources of a compensating entropy

increase, he concluded that the act of making a measurement must be responsible for an increase

in entropy. Thus a ’demon’ cannot decrease the entropy of a system by acquiring information

about it, without creating at least as much entropy when performing the measurement necessary

to acquire the information.

We will now examine the developments of Szilard’s idea, and their criticisms.

4.2.1 Information Acquisition

The next major development of Szilard’s argument[Bri51, Gab64, Bri56](referred to as [GB]) tried

to quantify the link between the information gained from a measurement and the entropy decrease

implied by that measurement. The essence of their development was to demonstrate situations in

which the process of acquiring information required a dissipation of energy. The amount of this

dissipation more than offset any gain in energy that could be achieved by decreasing the entropy

of the system.

Although [GB]’s arguments are no longer supported by the main proponents of an information-

entropy link, their physical models are (rather ironically) often still supported by opponents of

that link [DD85, EN99, for example] so we will need to give consideration to them here.

[GB] were able to make a quantitative statement of the information gained from a measurement

based upon Shannon’s work. They then went on to produce models to show that at least as much

entropy was created by the physical process by which the information was acquired. Their analysis
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analysing the physical basis of computation, argued that most logical operations can be performed

reversibly and have no minimal thermodynamic cost. The only operation which requires the

dissipation of energy is the erasure of a bit of information, which loses kT ln 2 energy. This has

become known as Landauer’s Principle. Given the importance attached to this principle, we

shall now present a simplified version of Landauer’s argument (see also [Lan92]) We shall assume

Figure 4.2: Landauer Bit and Logical Measurement

that each logical state of a system has one relevant (information bearing) degree of freedom, and

possibly many irrelevant (internal or environmental) degrees of freedom. We will represent this by

a diagram such as Figure 4.2(a) where the marked areas represent the area of phase space occupied

by the physical representation of the logical state.

A measurement can be represented, in logical terms, by a Controlled-Not (CNOT) gate (Table

4.1), where some System B is required to measure the state of some System A. System A is in

one of two possible states, 0 or 1, while System B is initially in the definite state 0 (represented

by the areas bounded by dotted lines in Figure 4.2(b) - the ’irrelevant’ degrees of freedom now

occupying a third axis). After System B interacts with System A, through a CNOT interaction, it

moves into the same state as A (the states of the two systems are now represented by the shaded

areas). System B has ’measured’ System A. The operation is completely reversible. If we allow

the systems to interact by the CNOT operation again, they return to their initial states.

The essential point argued by Landauer is that both before and after there are only two possible

logical states of the combined system, and the area of phase space occupied by the combined system

has not changed. As the entropy is a function of the accessible area of phase space, then the entropy

has not increased. The operation is both logically and thermodynamically reversible.

The development of [GB]’s work, to argue that each logical operation required a minimal

dissipation of energy, is shown to be invalid. A measurement may be performed, and reversed,

without any dissipation. Landauer did identify a logical procedure which is inherently dissipative.

This was called RESTORE TO ZERO. This operation requires the logical bit, initially in one of

the two states as in Figure 4.2(a), to be set to the state zero, regardless of it’s initial state, leading
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Input Output

A B A B

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 4.1: The Controlled Not Gate

to Figure 4.3. The triangles represent the location of the original microstate in Figure 4.2. The

”width” of phase space occupied by the information bearing degree of freedom has been reduced

from the width of the 0 and 1 states to the width of the 0 state. To satisfy Liouville’s theorem,

the ”width” occupied by the non-information bearing degrees of freedom must be doubled. This

amounts to the increase of entropy of the environment by a factor of k ln 2. If the environment is

a heat bath at temperature T , then we must dissipate at least kT ln 2 energy into the heat bath.

Landauer was not principally concerned with issues such as the Szilard Engine, and it was left

to Bennett[Ben82] to re-examine the exorcism of Maxwell’s demon. Bennett’s analysis accepted

that the Demon did not have to dissipate energy to measure the location of the atom. Instead,

he argues the demon has acquired one bit of information, and that bit of information must be

stored somewhere in the demon’s memory. After the demon has extracted kTG ln 2 energy from

the expansion of the one atom gas, the demon is left with a memory register containing a record of

the operation. In order to complete the cycle, the demon’s memory must be restored to it’s initial,

clear, state. This requires a RESTORE TO ZERO operation, which, by the Landauer Principle,

will dissipate kTG ln 2 energy. This exactly compensates for the energy gained from the expansion

of the gas. A similar conclusion was reached by [Pen70, Chapter VI].

This then forms the basis of the argument forging a quantitative link between entropy and

information theory. We will summarise it as follows:

• Entropy represents a state of ignorance about the actual state system;

• When an observer makes a measurement upon a system, she gains information about that

system, and so reduces her ignorance;

• This does indeed reduce the entropy of the observed system, by an amount equal to the gain

in Shannon information from the measurement;

• However, she must store this information in her memory;

• To perform this operation cyclically the memory must be erased;

• By Landauer’s Principle, the erasure must dissipate energy equal to the temperature times

the Shannon information erased, compensating for the entropy gain due to the measurement.
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Figure 4.3: Bit Erasure

Perhaps the clearest problem in this ’resolution’ of Maxwell’s Demon is the circularity of the

argument. Landauer’s Principle, that the ’erasure’ of a bit of information costs kT ln 2 energy,

was derived by Landauer on the assumption that the second law is true. It’s use by Bennett to

prove that the second law is not violated is appealing to the truth of the very point which is in

doubt. This is what Earman and Norton[EN98] refer to as the ”sound vs. profound” dilemma of

the information theoretic resolution, and undermines confidence in its universality.

We will now review the main counter-example to the information-entropy link using Szilard’s

Engine.

4.2.3 ”Demonless” Szilard Engine

In this Subsection we will examine the question, first raised by Popper, of whether it is possible to

construct a ”demonless” version of Szilard’s Engine. The issues raised by this will form the basis

of the analysis of Szilard’s Engine in the subsequent Chapters.

The ”demonless” Engine has been suggested many times by critics of the information-entropy

link[Pop57, Fey66, JB72, Cha73, Pop74], to demonstrate that a measurement is unnecessary to

understand the operation of the Engine. Unfortunately, both the consequence of these modifica-

tions, and their criticism, have been poorly thought out, and leave the question of a violation of
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the second law of thermodynamics unanswered.

We will present a simple modification of the ”demonless” Engine to answer criticisms that

have been made of this approach, and which appears to lead to a systematic entropy reduction.

The detailed analysis of this version of the Engine, and showing where and how it fails, will

occupy the following three Chapters, and will be used to critically examine the resolution of the

Maxwell’s Demon problem. The simplest version of the ”demonless” engine is described by

Figure 4.4: The Popper version of Szilard’s Engine

Feyerabend[Fey66] (Figure 4.4). The essence of this is that weights are attached on each side of

the partition, and rest upon a floor. If the atom, G, is located on the left when the piston, P, is

inserted, then the piston will move to the right, raising the left weight, W1, and leaving the right

weight, W2, on the floor. If G is located to the right, then W2 will be raised and W1 will remain

upon the floor. The height that a weight of mass M can be raised through is kTG

Mg ln 2. The result is

that heat has apparently been used to lift a weight against gravity, without the need for a demon

to perform a measurement, dissipative or not.

It is very unclear whether this version should be taken as a violation of the second law. Fey-

erabend certainly takes the situation at face value and claims this is a perpetual motion machine.

Popper [Pop74] argues that the machine works only because it contains only a single atom, and

that the atom only occupies a small fraction of the volume of the cylinder at any one time, so it’s

entropy is not increasing. Only if the gas were composed of many atoms would it make sense to

describe it as expanding. Similarly, Chambadal[Cha73] argues that thermodynamic concepts are

only applicable to many-body systems, so that the Szilard Engine has nothing to do with entropy,

and Jauch and Baron[JB72] claim the example is invalid because inserting the partition violates

the ideal gas laws 1.
1Jauch and Baron earlier state that a demon is unable to operate a Szilard Engine because of thermal fluctuations,
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The logic of these arguments is hard to follow. They seem to accept that heat can be used to

lift a weight, and may continue to do so, without any compensating dissipation. If this is the case,

the fact that a single atom gas has been used is irrelevant: the Kelvin statement of the second law

of thermodynamics has been violated. The fact that the amount of energy obtained in this way is

small is also irrelevant. Advances in nanotechnology and quantum computing develop technologies

that allow the manipulation of the states of individual atoms. It is conceivable that, in the not-

too-distant future, it would be possible to construct an engine consisting of a macroscopically large

number of microscopic Popper-Szilard Engines. As long as each engine could reliably transfer a

small amount of heat to work per cycle, we would be able to extract significant amounts of work

directly from the temperature of the environment.

Unfortunately many objections to the Popper-Szilard Engine are equally obscure. [dBT74,

Rot79] appear to argue that it is the design of the engine that now embodies the ’information’

that balances the entropy reduction. However, this can hardly be supported, as such ’structural

negentropy’ is a one-off cost, while the engine, once built, could extract unlimited energy. Others

[Bri96][SB98, page74] appear to confuse the Engine with Feyerabend and Popper’s opinions on

Brownian motion[Pop57, Pop74, Fey93].

However, there are two objections to the Popper-Szilard Engine which do require consideration.

These are due to Leff and Rex[LR90, pages 25-28] and to Zurek[Zur84] and Biedenharn and

Solem[BS95].

Leff and Rex offer an argument based upon Landauer’s Principle. They argue that, at the end

of the cycle, when one of the weights has been raised, the location of the piston and pulleys serves

as a memory of the location of the atom. In order to commence the new cycle, the piston must

be removed from either end of the container, and reinserted in the center. This constitutes an

’erasure’ of the memory and must be accompanied by a kTG ln 2 dissipation.

It is certainly the case that the analysis of the Popper-Szilard Engine leaves out how this

restoration is to take place without having to perform a measurement of the position of the piston.

In order to see if Leff and Rex’s criticism is justified, we will now suggest a method by which the

restoration may take place.

In Figure 4.4 there are two shelves, S1 and S2, on the left and right of the Engine, at a height
kTG

Mg ln 2 above the floor. When the gas has expanded, these shelves emerge on both sides of the

Engine. This will support whichever weight has been raised. There is now a correlation between

the location of the weights and the position of the piston. By means of the reversible CNOT

interaction (Table 4.1 and Figure 4.2(b)) we can use the location of the raised weights as System A

and the piston as System B. The correlation of the logical states ”0” and ”1” is equivalent to that

between the states of the piston and weights. If W1 is raised the piston is to the right while if W2

is raised, the piston is to the left. This should allow us to conditionally remove the piston from

whichever end of cylinder it is in and move it to the central position outside the cylinder. This

but give no explanation of how these thermal fluctuations enter into their actual analysis of the Engine later
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would appear to be in complete agreement with Landauer’s Principle, without having to perform

an external measurement, or dissipate energy.

Of course, it may be argued that now we have the weight to restore to it’s unraised position

before we have truly ’completed’ a cycle2. An obvious way of doing this is to pull the shelves back

and allow the raised weight to fall inelastically to the floor, dissipating the kTG ln 2 energy required

to raise it. This appears to confirm the resolution based upon Landauer’s Principle. However, this

is deceptive.

To dissipate the raised energy, the weights must be in contact with an environment at some

temperature (we will assume a heat bath located below the floor). Nothing so far has required

that the heat bath of the weight need be the same as the heat bath of the one atom gas (we will

also assume that the partition and pulleys are perfect insulators). Consider what happens if the

heat bath into which the weight dissipates it’s energy is at a higher temperature than TG. Now we

appear to have completed the cycle, to the satisfaction of everyone, and have apparently satisfied

the Landauer Principle. Unfortunately, we have also reliably transferred energy from a colder heat

bath to a hotter one, and can continue to do so. Such a state of affairs would still constitute a

violation of the second law of thermodynamics, according to the Clausius version:

No process is possible whose sole result is the transfer of heat from a colder to a hotter

body

We could now attach a small Carnot engine between the two heat baths and allow the same small

amount of energy to flow back by conventional means, extracting some of it as work in the process.

It is far from clear that information theory is of any use in identifying where the argument above

must fail.

The second objection, due to Zurek3, is more subtle. Zurek argues that quantum measurement

plays a role in preventing the demonless Engine from operating. A classical atom is trapped on

one side or other of the piston, when it is inserted. The demonless Engine seeks to exploit this

without making a measurement, to prove that the ”’potential to do work’ [is] present even before

. . . a measurement is performed”[Zur84].

For a quantum object, the situation is more complex:

The classical gas molecule, considered by Szilard, as well as by Jauch and Baron,

may be on the unknown side of the piston, but cannot be on ’both’ sides of the piston.

Therefore intuitive arguments concerning the potential to do useful work could not

be unambiguously settled in the context of classical dynamics and thermodynamics.

Quantum molecule, on the other hand, can be on ’both’ sides of the potential barrier,
2It could be objected that raising the weight is precisely the ’work’ that we were trying to achieve. To demand

that all weights be restored to their initial conditions appears a vacuous way of ensuring that ’work’ cannot be

extracted. This shows that even the concept of ’work’ needs to be clarified.
3This objection was endorsed by [BS95] although they disagree with the information interpretation of entropy
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even if its energy is far below the energy of the barrier top, and it will ’collapse’ to one

of the two potential wells only if [it] is ’measured’ [Zur84]

This is non-intuitive . . . but quantum mechanics is unequivocal on this point . . . the

objections of Popper and Jauch and Baron - that the Szilard engine could extract

energy without requiring any observation - is clearly wrong. Even with the shutter

closed, the single-molecule gas has both sides available for its thermal wave function.

Observation is require to isolate it on one side or the other. [BS95]

If true, this would certainly invalidate the arguments of Jauch and Baron, Popper and Fey-

erabend, and would make the act of quantum measurement a fundamental part of reducing the

entropy of an ensemble by gaining information about it’s microstate. The attempt to connect

’wavefunction collapse’ with entropy changes is widespread[Neu55, WZ83, Lub87, Par89a, Par89b,

Alb94], although it is usually associated with an entropy increase. If Zurek’s argument here holds

good, this calls into question how ’no-collapse’ versions of quantum theory, such as Bohm’s or the

Many-Worlds Interpretation could explain the Szilard Engine. Unfortunately, neither Zurek nor

Biedenharn and Solem actually demonstrate that the piston does not move.

Zurek calculates the Free Energies, based upon the quantum partition function, to justify the

argument that the gas can only lift a weight if it is completely confined to one side or the other.

This requires us to assume that the statistical Free Energy is a valid measure of the ’potential

to do work’. A little thought should show that this will only be the case if the second law of

thermodynamics is known to be valid, and this is precisely the point which is under contention.

Biedenharn and Solem simply state that ”the pressure on both sides of the shutter is the same,

the piston remains stationary” without showing their calculations. They proceed to argue that the

act of observation must perform work upon the gas, and it is this work which is extracted in the

subsequent expansion. Again, however, they do not provide a convincing demonstration of how

this work is performed.

This leaves the quantum superposition argument an intriguing possibility to block the opera-

tion of the modified Popper-Szilard Engine, but essentially incomplete. We will address this by

constructing an explicitly quantum mechanical version of the Popper-Szilard Engine in the next

Chapter.

4.3 Conclusion

The thorough analysis of the points of contention regarding the Szilard Engine has lead us to

construct a modified version of it which, aside from the question of quantum superposition, appears

to be capable of producing anti-entropic behaviour. The operation of this Engine is summarised in

Figure 4.5 In Stage (a), the piston is inserted into the box, which contains a single atom in contact

with a heat bath. Stage (b) shows how the pressure of the atom on the piston, from the left, causes

the lefthand weight to be lifted. The righthand weight remains at rest upon the floor. In Stage (c),
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Figure 4.5: The Cycle of the Popper-Szilard Engine

moveable shelves come out on both sides, and support whichever weight has been raised. Stage

(d) removes the piston from the box. In this case it is on the righthand side. It’s position outside

the box is correlated to the position of the raised weight. Stage (e) uses this correlation to reset

the piston, by means of a Controlled-NOT type interaction. The ’information’ as to which side

of the box originally contained the atom is now recorded in the location of the raised weight. If

we now remove both shelves, whichever weight is raised will fall to the floor. This dissipates the

energy used to raise it, and restores the machine to it’s initial state. However, if the weight is in

contact with a higher temperature heat bath than the atom, then heat has been transferred from

a colder to a hotter heat bath, in apparent violation of the second law of thermodynamics.

A detailed analysis of the physics of this cycle will pursued in Chapters 5 and 6. We will not

assume any thermodynamic relationships which depend upon the second law for their validity.

We will start by examining the interactions between the microscopic states of the Engine. When
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we have thoroughly analysed the time evolution of the system at the level of individual quantum

states, we will introduce a statistical ensemble of these states, by means of density matrices. This

will enable us to calculate the mean, and long term, behaviour of the Engine, and show that, in

the long term, it is not capable of producing heat flows which violate the Clausius statement.

The central issues that must be addressed, when constructing the quantum mechanical Popper-

Szilard Engine, are:

1. What is involved in the process of ’confining’ the particle to one side of the box? Does this

require only the inserting of a potential barrier in the center of the box or must there also

be a ’measurement’ upon the position of the particle?

2. Does this ’confining’ require an input of energy to the system? This input of energy may

come through perturbing existing eigenvalues, or by a transition between eigenstates. The

effect on energy expectation values of both of these processes must be calculated.

3. Can a piston in the center of the box move, when the gas is still in a superposition of being

on both sides of the box?

4. Can this movement be coupled to a pulley, to lift a weight? Two weights may be involved.

5. Can the partition be restored to the center of the box without making an external measure-

ment?

Only after we have done this will we introduce the concepts of entropy and free energy, in

Chapter 7. Our introduction of these concepts will be justified on the basis of the analysis of the

previous chapters, rather than the reverse. We will show that these concepts are valid, even for

single atom systems, and that the entropy of the Engine is always increasing.

Finally, in Chapter 8 we will use the thermodynamic concepts to generalise the resolution

beyond the specific case of the Popper-Szilard Engine. We will show that this generalisation

resolves the problems found in our discussion of the Szilard Engine and Maxwell’s Demon above,

and provides a complete answer to the Szilard Paradox. This will show that the information

theoretic resolutions are both unnecessary and insufficient. The Szilard Engine is unsuccessful as

a paradigm of the information-entropy link.
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Chapter 5

The Quantum Mechanics of

Szilard’s Engine

In Chapter 4 we reviewed the historical analysis of the Maxwell’s Demon, and Szilard Engine

thought experiments. In particular the question was raised of whether information processing or

quantum measurement was an essential part of understanding these problems.

In this Chapter we will analyse the quantum mechanics of the operation of the Szilard Engine.

We are particularly interested in whether the arguments of [Zur84] or [BS95] regarding the role of

quantum measurements are valid. To complete the analysis of the Szilard Engine, the machine must

be connected up to statistical mechanical heat reservoirs. The effects of the resulting statistical

considerations will be examined in Chapter 6.

We can summarise the two issues that need to be assessed in each stage of the operation of the

quantum Szilard Engine as:

1. Can the operation proceed without an external agent (’demon’) needing to acquire and make

conditional use of knowledge of the systems microstate?

2. Can the transformation be achieved without making a significant alteration in the internal

energy of the Engine? In other words, does it require work upon the system in order to drive

its operation?

This Chapter will be primarily concerned with the first question, although it will also calculate

changes in internal energy of specific microstates. The complete answer to the second question

will need consideration of the statistics of thermal ensembles in Chapter 6.

In order to analyse the questions above, it will, of course, be necessary to make a number

of abstractions and idealisations. All motion is, as usual, considered to be frictionless. In the

absence of thermal heat baths, the systems are not decoherent so pure states will evolve into pure

states, not density matrices. In Appendix C we argue that the requirement that no measurements

are performed upon the system by external agents (’Demons’ and the like), is equivalent to the
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requirement that a single unitary operator is capable of describing the evolution of the system.

Rather than attempt to construct explicit Hamiltonians for the interaction between parts of the

Szilard Engine, we will focus upon the question of how to describe the evolution of the engine in

terms of unitary operators. If the required evolution is unitary, then there is some Hamiltonian

that, in principle, could be used to construct a suitable Engine. This approach will enable us to

make more general conclusions than if we were to attempt to solve a particular Hamiltonian. We

nevertheless will show that the essential properties of our idealised unitary evolution operators are

the same as those that would result from a more realistically constructed Hamiltonian.

The evolution of the quantum states of the Szilard Engine will be studied in six sections. We

will avoid introducing any external measuring devices, and will concentrate upon the constraints

that unitarity imposes upon the evolution of the system. The sections are:

1. The unperturbed eigenstates of the particle in a box of width 2L . This is a standard quantum

mechanical problem. Hereafter, the particle in the box will be referred to as a ’gas’;

2. The perturbation of these eigenstates as a potential barrier of width 2d (d ¿ L) is raised

in the center of the box, up to an infinite height. This must be considered in detail as

[JB72] have pointed out the gas laws cannot be relied upon for a single atom. The adiabatic

transition was analysed essentially correctly by [Zur84, BS95], but more detail is presented

here. Further, an error in the asymptotic form of the energy eigenvalues given by Zurek is

examined and corrected;

3. The barrier is replaced by a moveable piston, also treated as a quantum system. The effect

of the interaction pressure from the gas is analysed on both sides of the piston, and then

combined into a single time evolution operator;

4. The quantum state of the weight to be lifted against gravity is analysed. Again, this is a stan-

dard problem, with solutions given by Airy functions. An evolution operator is constructed

to connect the weight, partition and gas;

5. The problem of restoring the piston to the center of the box is analysed in terms of unitary

operators, which will be shown to require correlating the movement of the piston to the final

state of the raised weights. However, it is found that the quantum state of the weight leads

to an uncertainty in the operation of the resetting mechanism. This uncertainty leads to the

possibility of the Engine going into reverse. The effects of this reversal will be evaluated in

Chapter 6;

6. The conclusion of Sections 5.3 and 5.4 is that, if the gas is capable of raising a weight

when the gas is confined to one side of the piston (which is generally accepted), then it

can still raise a weight when the single-atom gas is in a superposition on both sides of the

piston. This is contrary to the analysis of [Zur84, BS95] and calls into question the role

that the demon is alleged to play in either of their analysis. Some of the objections of
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[Pop74, Pop56, Fey66, JB72, Cha73] are therefore shown to be valid in the quantum domain.

This constitutes the main result of this Chapter. However, the problem of restoring the

system, including piston, to it’s initial state has only been partially resolved and can only be

fully evaluated in the next Chapter.

5.1 Particle in a box

We start by analysing the eigenstates of the one atom gas in the engine, before any potential

barrier or piston is inserted. The one atom gas occupies the entire length of the Szilard Box, as in

Figure 4.1. The Hamiltonian for the atom in the box is then

HG0Ψn =
(
− h̄2

2m

∂2

∂x2
+ V (x)

)
Ψn (5.1)

with

V (x) =





∞ (x < −L)

0 (−L < x < L)

∞ (x > L)





This is the standard particle in an infinite square well potential, with integer n solutions of energy

En =
h̄2π2

8mL2
n2

It will be easier to divide these into odd (n = 2l) and even (n = (2l − 1)) symmetry 1 solutions

and make the substitutions

Kn = L

√
2mEn

h̄

X =
x

L

ε =
h̄2π2

8mL2

Odd symmetry solutions

ψl =
1√
L

sin (KlX) (5.2)

El = 4εl2

Even symmetry solutions

ψl =
1√
L

cos (KlX) (5.3)

El = 4ε

(
2l − 1

2

)2

1Unfortunately odd symmetry solutions have even values of n and vice-versa. Odd and even will exclusively be

used to refer to the symmetry properties.
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5.2 Box with Central Barrier

We now need to consider the effect of inserting the partition into the Szilard Engine (Figure 4.5(a)).

It will be simplest to follow Zurek, and treat this as a potential barrier of width 2d (d ¿ L), and

variable height V , in the center of the box:

V (x) =





∞ (x < −L)

0 (−L < x < −d)

V (−d < x < d)

0 (d < x < L)

∞ (L < x)





Initially the barrier is absent, V = 0. As the partition is inserted, the barrier rises, until, when the

partition is fully inserted, dividing the box in two, the barrier has become infinitely large, V = ∞.

This is a time dependant perturbation problem as the barrier height V is a function of time. The

instantaneous Hamiltonian, for a barrier height V , can be written in terms of the instantaneous

eigenstates and eigenvalues as:

HG1(V ) =
∑

l

{
Eodd

l (V )
∣∣Ψodd

l (V )
〉 〈

Ψodd
l (V )

∣∣ + Eeven
l (V ) |Ψeven

l (V )〉 〈Ψeven
l (V ) |}

The adiabatic theorem (see [Mes62, chapter 17] and Appendix C) shows that if the barrier is raised

sufficiently slowly, the n’th eigenstate will be continuously deformed without undergoing transitions

between non-degenerate eigenstates. The unitary evolution operator for the rising barrier is then

approximated by

UG(t) ≈
∑

l





e
i
h̄

∫ t
Eodd

l (τ)dτ
∣∣Ψodd

l (V )
〉 〈

Ψodd
l (0)

∣∣
+e

i
h̄

∫ t
Eeven

l (τ)dτ |Ψeven
l (V )〉 〈Ψeven

l (0) |



 (5.4)

As this is from a time dependant Hamiltonian, it is not energy conserving. In agreement with

Zurek, and Biedenharn and Solem, we will not regard this as a problem, as long as the change in

energy caused by inserting the potential barrier can be shown to be negligible when compared to

the energy extracted by the engine (this will be shown in Chapter 6).

The problem of raising the potential barrier is now that of solving the stationary Schrödinger

equation for an arbitrary barrier height V . This is analysed in detail in Appendix D. It is shown

(see Figure D.1) that the energy eigenvalues and eigenstates change continuously from the zero

potential barrier to the infinitely high barrier.

The main results of Appendix D are now summarised, for the limit of a high potential barrier,

V À E and p = d/L ¿ 1.

Odd Symmetry

Ψ ≈





1√
L(1¡p)

sin(Kal(1 + X)) (−1 < X < −p)

(¡)l

p
L

(
Kal

Kcl

)
e−Kcl(p−X)¡e−Kcl(p+X)√

(1¡p)
(−p < X < p)

− 1√
L(1¡p)

sin(Kal(1−X)) (p < X < 1)

(5.5)
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Kal ≈ lπ

(1− p)

(
1− (1− 2e¡2Kclp)

Kcl(1− p)

)

El ≈ ε

(
2l

(1− p)

)2 (
1− 2

(1− 2e¡2Kclp)
Kcl(1− p)

)

Kclp ≈ d
√

2mV

h̄
À 1

Even Symmetry

Ψ ≈





1√
L(1¡p)

sin(Kal(1 + X)) (−1 < X < −p)

(¡)l

p
L

(
Kal

Kcl

)
e−Kcl(p−X)+e−Kcl(p+X)√

(1¡p)
(−p < X < p)

1√
L(1¡p)

sin(Kal(1−X)) (p < X < 1)

(5.6)

Kal ≈ lπ

(1− p)

(
1− (1 + 2e¡2Kclp)

Kcl(1− p)

)

El ≈ ε

(
2l

(1− p)

)2 (
1− 2

(1 + 2e¡2Kclp)
Kcl(1− p)

)

Kclp ≈ d
√

2mV

h̄
À 1

The lth odd and even eigenstates become degenerate2 in the limit, with energy levels El = ε
(

2l
1¡p

)2

.

As the adiabatic theorem shows we can insert the barrier without inducing transitions be-

tween states, the only energy entering into the system when inserting the partition is the shift in

eigenvalues. From the above results the energy level changes are

V = 0 V = E V = ∞
Odd ε (2l)2 ε (2l)2 ε

(
2l

1¡p

)2

Even ε (2l − 1)2 ε
(

2l¡1
1¡p

)2

ε
(

2l
1¡p

)2

The fractional changes in odd and even symmetry energies, respectively, are

E(∞)− E(0)
E(0)

=





p(2¡p)
(1¡p)2 ≈ 2p

p(2¡p)
(1¡p)2 + 4l¡1

(1¡p)2(2l¡1)2 ≈ 2p + 1+2p
l

where the approximations assume p ¿ 1 and l À 1 . In both cases it can be seen that the energy

added is a small fraction of the initial energy. However, for low energy even states, where l À 1 is

not valid, relatively large amounts of energy must be added even when p ¿ 1. For example l = 1

leads to ∆E ≈ 3E(0). Some work must be done upon the gas to insert the partition. The size

of this work required will be evaluated in Section 6.2 as part of the statistical mechanics of the

system.

These results can be best understood in terms of the wavelength of the eigenstate in the region

where the potential barrier is zero

λl = 2πKalL

2The question of whether the asymptotic degeneracy of the odd and even solutions represents a problem for the

application of the adiabatic theorem can be answered by noting that, as the perturbing potential is symmetric, then

the probability of transition between odd and even solutions is always zero.
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The number of nodes within the box is 2L/λl, as the box is of width 2L. The energy of the

eigenstate is directly related to the density of nodes within the box.

The odd symmetry wavefunctions are simply expelled from the region of the barrier, without

changing the number of nodes. The same number of nodes are therefore now confined in a volume

reduced by a factor 1− p. The wavelength must decrease by this factor, leading to an increase in

energy levels.

Even symmetry wavefunctions must, in addition, become zero in the center of the box, as the

barrier becomes high. This requires an additional node, increasing their number to the same as the

next odd symmetry wavefunction. The wavelength must decrease sufficiently so that the original

number of nodes, plus one, is now confined to the reduced volume. This is a higher increase

in density of nodes than the corresponding odd symmetry, but as the original number of nodes

increases, the effect of the additional node becomes negligible.

In the limit of very high barriers, the wavefunctions become

Ψeven
l ≈ Ψodd

l ≈ 1√
L(1¡p)

sin
(
lπ 1+X

1¡p

)
(−1 < X < −p)

Ψeven
l ≈ Ψodd

l ≈ 0 (−p < X < p)

Ψeven
l ≈ −Ψodd

l ≈ 1√
L(1¡p)

sin
(
lπ 1¡X

1¡p

)
(p < X < 1)

As these are degenerate, we may form energy eigenstates from any superposition of these states

Ψl(r, α) = reiαΨeven
l +

√
1− r2e¡iαΨodd

l

Figure 5.1 shows the probability density
∣∣∣Ψ1( 1p

2
, α)

∣∣∣
2

as α varies between −π/4 and 3π/4. Of

particular interest are the pair of orthogonal states that occur when α = 0 and α = π/2

Ψλ
l =

1√
2

(
Ψeven

l −Ψodd
l

)

=





√
2

L(1¡p) sin
(
lπ 1+X

1¡p

)
(−1 < X < −p)

0 (−p < X < 1)

Ψρ
l =

1√
2

(
Ψeven

l + Ψodd
l

)

=





0 (−1 < X < p)√
2

L(1¡p) sin
(
lπ 1¡X

1¡p

)
(p < X < 1)

These represent situations where the one atom gas is located entirely on the left or the right of the

partition, respectively. When we consider the system with the partition fully inserted, the natural

inclination is to describe the Hilbert space by a basis in which the one-atom gas is confined to one

side or the other. The Ψλ
l and Ψρ

l provide this basis and allow us to write the final Hamiltonian

in the form:

HG1 =
4ε

(1− p)2
∑

l

l2
(∣∣Ψλ

l

〉 〈
Ψλ

l

∣∣ + |Ψρ
l 〉 〈Ψρ

l |
)

(5.7)

We can now start to consider Zurek’s argument that the one-atom gas must be measured to be

confined to one side or the other of the Szilard Engine. Suppose the gas is initially in an even
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Figure 5.1: Superpositions of odd and even symmetry states

symmetry eigenstate Ψeven
l (0), with no barrier. As the barrier is gradually inserted this eigenstate

is deformed continuously through Ψeven
l (V ) until in the limit it reaches 1p

2

(
Ψλ

l + Ψρ
l

)
. The single

atom is not confined, or in a mixture of states, but is in a superposition of being on both sides of

the barrier. The same will be true if we had started with an odd symmetry eigenstate.

It is worth noting, though, that if we had started with a superposition of energy eigenstates3

Ψ =
1√
2

(
Ψeven

l (0)−Ψodd
l (0)

)

the adiabatic insertion of the potential barrier leads to the state Ψλ
l . This is confined entirely

to the left of the barrier. A similarly constructed initial state leads to the one-atom gas being

confined entirely to the right of the barrier. In order to draw a conclusion about the effect of

the quantum superposition upon the Szilard Engine we will need to explicitly construct the full
3Ignoring a trivial, time dependant phase factor that arises between the odd and even symmetry states as their

energy levels change by different quantities
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interaction between the one-atom gas and the piston itself. This will be performed in Section 5.3,

below.

5.2.1 Asymptotic solutions for the HBA, V À E

In this subsection we will briefly investigate a discrepancy between Zurek’s results, and those given

above. The expressions derived for energy eigenvalues in Appendix D differ from those presented

in [Zur84]. We will compare these two expressions with the numerical solutions to the eigenvalue

equations, and show that the HBA solutions are a closer match to the numerical results.

In the High Barrier Approximation (HBA), the eigenvalues differ only by an energy splitting:

Eeven
l ≈ 4ε

(
l

1− p

)2 (
1− 2

1 + 2e¡2Kclp

Kcl(1− p

)
= El −∆l

Eodd
l ≈ 4ε

(
l

1− p

)2 (
1− 2

1− 2e¡2Kclp

Kcl(1− p)

)
= El + ∆l

where

El = ε

(
2l

1− p

)2 (
1− 2

Kcl(1− p)

)

∆l = ε

(
4l

1− p

)2
e¡2Kclp

Kcl(1− p)

For comparison, in [Zur84] Zurek appears to be suggesting the following results (after adjusting

for different length scales):

EZl = ε

(
2l

1− p

)2

∆Zl =
ε

π

(
4

1− p

)2

e¡2Kclp

Notice, that this would imply that the odd symmetry energy levels are falling slightly for very

high barrier heights, despite initially being lower than the limiting value. Numerical analysis of

the eigenvalue equations (Appendix D.3) leads to Figure 5.2. This shows the results for the first

and third pairs of eigenstates. The dotted lines are Zurek’s solution, while the dashed lines are

the HBA approximations. Finally the unbroken lines give the numerical solution, for which the

energy splitting becomes less than the difference between the limiting energy and the mean energy.

The odd and even numerical solutions approach degeneracy faster than they approach the limiting

value and the odd symmetry eigenvalues are always less than the limit.

The HBA results closely match the numerical solution while Zurek’s results are too high, and

his splitting is too large. The reason for this is unclear, as Zurek gives no explanation for his

approximation. However, it is very similar to the central potential barrier problem considered by

Landau and Lifshitz [LL77, chapter 5]. Landau and Lifshitz give a formula for the energy splitting,

which matches Zurek’s ∆Zl, but no formula for the mean energy - which Zurek appears to assume

to be equal to the limiting value. This assumption, that the mean energy approaches the limiting

value much faster than the energy levels become degenerate, is clearly incorrect in this instance.
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Figure 5.2: Asymptotic Values of Energy Levels

As the energy splitting formula of Landau and Lifshitz does not agree with either the asymptotic

approximation calculated here, or the numerical solutions to the equations, it is also unclear that

the semi-classical approximation they use is applicable to this situation.

5.3 Moveable Partition

In Section 4.2 one of the key arguments against the operation of the Popper-Szilard Engine was

that of Zurek[Zur84], and Biedenharn and Solem[BS95], that in the quantum case the partition

does not move when the particle is in a superposition of being on both sides of the partition.

However, neither actually provide a description of the interaction between the one atom gas

and the piston. Instead, both refer to thermodynamic concepts to justify their arguments. Zurek,

somewhat confusingly, goes on to concede that

..one can almost equally well maintain that this ... describes a molecule which is on an

’unknown but definite’ side of the partition

There is as much reliance upon ’intuitive’ arguments as the classical analysis they criticise. To

improve on this situation it is necessary to analyse the actual interaction between the piston and

the one-atom gas, in terms of unitary evolution operators. Only when this has been completed

can the effect on a statistical ensemble be calculated, and the validity of thermodynamic concepts

evaluated.

There are two main issues that need to be considered:

• The description of the moveable partition (piston). We will need to treat the piston as a

quantum object. To do this rigorously would require dealing with some very subtle difficulties

regarding Hilbert spaces with continuous parameters and localised states (e.g. see [Per93,

Chapter 4]). However, these difficulties are not relevant to the problem considered here.
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Instead we will construct a fairly simple Hilbert space, with a basis that corresponds to the

minimum properties a piston is required to possess.

• The interaction between the piston and the one atom gas. Before dealing with the problem

of the gas in a superposition, we shall analyse the situation where the gas is already confined

to one side of the piston. In this situation it is generally agreed that the gas is capable of

expanding, and pushing the piston in doing so. If it were not the case, then it would be

impossible to extract any energy from an expanding one atom gas even when a demon had

knowledge of its location, and the entire debate over Szilard’s Engine would be redundant.

We will therefore assume only those properties of the piston state that are necessary to be

able to describe the expansion of the gas when it is known to be confined to one side or another.

We will then use these properties, and the description of the expansion of the gas, to examine the

situation when the gas is in a superposition of both sides of the piston. We will not attach a weight

to the piston until Section 5.4.

5.3.1 Free Piston

The first problem we need to solve is to find a suitable description of a piston as a quantum

system. We will start by defining a simple Hilbert space, without taking the gas into account, with

an appropriate unitary evolution operator for a frictionless piston.

We will consider the piston to be an object, centered at some point −(1 − p) > Y > (1 − p) ,

with a width 2p ¿ 1. The quantum state for a piston located at Y will be |Φ(Y )〉. The width p

represents the width of the ’hard sphere repulsion’ potential that the piston will have for the gas.

This corresponds to an effective potential for the gas of

V (X, Y ) =





∞ (X < −1)

0 (−1 < X < Y − p)

∞ (Y − p < X < Y + p)

0 (Y + p < X < 1)

∞ (X > 1)

It is important to note that p is not the spread (or quantum uncertainty) in the position co-ordinate

Y . If the piston is a composite object, Y would be a collective co-ordinate describing the center of

the object. For a reasonably well localised object, the spread in the co-ordinate Y , denoted by δ,

is expected to be much smaller than the extent of the object, represented by p. Now consider the

behaviour required of the frictionless piston in the absence of the gas. If the piston is initially in

state |Φ(Y )〉, and is moving to the right, then after some short period



Figure 5.3: Motion of Piston

The motion to the right must be described by a unitary operation

U(τ) |Φ(Y )〉 = |Φ(Y + δ)〉

When the piston reaches the end of the Szilard Box (|Φ(1)〉 it cannot come to a complete halt

as this would require an evolution operator of

U(τ) |Φ(1− δ)〉 = |Φ(1)〉
U(τ) |Φ(1)〉 = |Φ(1)〉

and a mapping of orthogonal onto non-orthogonal states is not unitary. Instead the piston must

collide elastically with the edge of the box and start moving uniformly to the left (Figure 5.3(b) ).

We now have to distinguish left from right moving piston states, so that

U(τ) |ΦL(Y )〉 = |ΦL(Y − δ)〉
U(τ) |ΦR(Y )〉 = |ΦR(Y + δ)〉

Without this distinction we would need a left moving evolution

U(τ) |Φ(Y )〉 = |Φ(Y − δ)〉

and a right moving evolution

U(τ) |Φ(Y )〉 = |Φ(Y + δ)〉

and again, this would not be unitary, as the same state |Φ(Y )〉 is mapped to different states.

Left and right moving states are automatically required to be orthogonal, even if they are

spatially overlapping, owing to the fact that inner products are invariant under unitary evolution,

so that

〈ΦL(Y ) |Uy(τ)U(τ) |ΦR(Y )〉 = 〈ΦL(Y − δ) |ΦR(Y + δ)〉
〈ΦL(Y ) |ΦR(Y )〉 = 0
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From this, we can now construct a Hilbert space spanned by a set of N = 2(2j +1) states, each

centered on Yn = nδ, n = −j, ...j where j = 1¡p
δ . The required evolution operator is:

UP1(τ) =
j¡1∑

n=¡j

|ΦR(Yn+1)〉 〈ΦR(Yn) |+ |ΦL(Yj)〉 〈ΦR(Yj) |

+
j∑

n=¡j+1

|ΦL(Yn¡1)〉 〈ΦL(Yn) |+ |ΦR(Y¡j)〉 〈ΦL(Y¡j) | (5.8)

The first line represents a piston moving to the right, and reversing direction at n = j, while the

second line is the piston moving to the left, and reversing at n = −j. Movement is with a fixed

speed ω = δ
τ , so that over the characteristic period of time τ it has moved exactly one ’step’ to

the left or right.

This operator will be unitary, providing

〈ΦA(Yn) |ΦB(Ym)〉 = δABδnm (5.9)

It is possible to construct a Hilbert space and unitary evolution satisfying these conditions, by

adapting the quantum clock system [Per80]. It is important to note that the moving piston states

above are not eigenstates of the Hamiltonian associated with UP1(τ), and so do not have well

defined energies. This is necessary to ensure that they are moving states. States with well defined

energies would necessarily be stationary.

5.3.2 Piston and Gas on one side

Having defined our piston states, we can now start to consider the interaction between the piston

and the single atom gas. This requires us to define a unitary evolution operator that acts upon



and −1 < X < Yn − p. We will use the superscript λ to represent a gas state on the left of the

piston, and ρ for states of the gas on the right of the piston.

The left gas states and the piston states are combined to define a joint basis:

∣∣Ψλ
l (Yn)ΦB(Yn)

〉

First we will define the internal energy of the gas subsystem, then we will construct an evolution

operator for the joint system, including the interaction between the gas and piston.

The internal energy of the gas state
∣∣Ψλ

l (Yn)
〉

is 4ε
(

l
Yn+1¡p

)2

so the Hamiltonian for the

one-atom gas subsystem’s internal energy is given by

Hλ
G2 =

j∑
n=0

ρ(Yn)Hλ
G2(Yn) (5.11)

Hλ
G2(Yn) =

∑

l

4ε

(
l

Yn + 1− p

)2 ∣∣Ψλ
l (Yn)

〉 〈
Ψλ

l (Yn)
∣∣

It is important to be clear about the role played by the operators ρ(Yn) = |ΦL(Yn)〉 〈ΦL(Yn) | +
|ΦR(Yn)〉 〈ΦR(Yn) |. This does not imply that the piston is part of the gas subsystem, or that this

particular Hamiltonian includes an interaction energy between the gas and piston. The Hλ
G2(Yn)

represent the internal energy states of the gas, given a particular position of the piston. The

combined Hamiltonian Hλ
G2 includes ρ(Yn) to project out the position of the piston. The parameter

Y is an external parameter of the gas, describing an external configuration, or boundary condition,

upon the gas, as opposed to X which is an internal parameter. It is the motion associated with X

that generates the internal energy in HG2, not Y .

Details of the internal energy of the piston would depend upon it’s construction as a composite

system, so we will simply include a term HP to represent this, and assume that there is no

interaction between the internal piston states and it’s external position, or the gas states.

Neither HG2 nor HP represent the interaction between the gas and piston properly, as they

give only internal energies for each subsystem. A Hamiltonian consisting of H = HG2 +HP would

not lead to a moving piston at all. Instead we must construct an idealised evolution operator to

describe the expansion of the gas, pushing the piston. When the piston reaches the end of the

box, it will collide elastically, as before, and as it’s direction reverses it will compress the gas.

For simplicity we assume that when the piston reaches the center of the box, it is not capable of

compressing the gas any further, and will reverse back to it’s original direction4. This motion can

be described by the unitary operator:

Uλ
P2(τ) =

∑

l

{
j¡2∑
n=1

∣∣Ψλ
l (Yn+1)ΦR(Yn+1)

〉 〈
Ψλ

l (Yn)ΦR(Yn)
∣∣

+
j¡1∑
n=2

∣∣Ψλ
l (Yn¡1)ΦL(Yn¡1)

〉 〈
Ψλ

l (Yn)ΦL(Yn)
∣∣

+
∣∣Ψλ

l (1− p)Φ(1− p)
〉 〈

Ψλ
l (Yj¡1)ΦR(Yj¡1)

∣∣
4This assumption will be more realistic when the attached weight is included in the system, in the next Section.

91



+
∣∣Ψλ

l (Yj¡1)ΦL(Yj¡1)
〉 〈

Ψλ
l (1− p)Φ(1− p)

∣∣

+
∣∣Ψλ

l (0)Φ(0)
〉 〈

Ψλ
l (Y1)ΦL(Y1)

∣∣

+
∣∣Ψλ

l (Y1)ΦR(Y1)
〉 〈

Ψλ
l (0)Φ(0)

∣∣} (5.12)

The first and second lines represent the piston moving to the right (gas expanding) and the left (gas

compressing) respectively. The third and fourth lines represent the right moving piston reaching

the end of the box, coming to an instantaneous halt in the state |Φ(1− p)〉, and reflecting to the

left, starting to recompress the gas. The fifth and sixth lines, similarly, represents the piston,

reaching the maximum compression of the gas in the center of the box, coming to a halt in |Φ(0)〉,
before starting to move back to the right under pressure from the gas5.

The eigenstates of Uλ
P2(τ) are superposition of all the Yn states:

|Λal〉 =
j¡1∑
n=1

{
eina

∣∣Ψλ
l (Yn)ΦR(Yn)

〉
+ e¡ina

∣∣Ψλ
l (Yn)ΦL(Yn)

〉}

+
∣∣Ψλ

l (0)Φ(0)
〉

+ eija
∣∣Ψλ

l (1− p)Φ(1− p)
〉

Uλ
P2(τ) |Λal〉 = eia |Λal〉

Continuity at
∣∣Ψλ

l (1− p)Φ(1− p)
〉

requires that e¡ija = eija . This imposes a periodic boundary

condition upon the system, and gives a discrete set of eigenstates |Λal〉 that satisfy ja = πm,

m = −j + 1, . . . , j

The Hamiltonian that drives the unitary evolution Uλ
P2(τ) is

Hλ
τ2 =

1
τ

∑

a,l

a |Λal〉 〈Λal |

This does not offer any simple interpretation in terms of an internal energy HG2 of the gas plus an

interaction term representing the pressure of the gas upon the piston. The simplest way to take

into account the internal energy of the gas, and also any internal states of the piston system, is

with a total Hamiltonian:

Hλ
T2 = (1− h(t))Hλ

G2 + h(t)Hλ
τ2 + HP

The time dependant function h(t) allows the ’switching on’ and ’switching off’ of the pressure

interaction between the piston and the gas. It is equal to one when the piston is present in the

box, and zero when the piston is absent6. While h(t) is one, the interaction of gas and piston

drives the system through the evolution Uλ
P2(t) = eiHλ

τ2t, causing the gas to expand, with the

piston moving to the right, or to compress, with the piston moving to the left, in a cyclic motion.
5This operator assumes the expansion does not cause transitions between internal states of the gas. As long as

the expansion period τ is sufficiently long, this will be consistent with the adiabatic theorem (Appendix C).
6It may be objected that HT2 is unrealistic as it appears to requires the internal energy of the gas to be ’switched

off’ during the expansion phase. An obvious, if woefully contrived, way to correct this is to have HG2 at all times,

but to ’switch on’ an interaction Hamiltonian HI2 = (HT2−HG2). That more realistic Hamiltonians will ultimately

produce the same result is argued later.
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If the interaction is ’switched on’ for just long enough to expand the gas to it’s full extent, and

then ’switched off’, the final states will be at a lower energy than they were before the expansion7.

The excess energy will have been stored in the interaction between the gas and piston, and the

combination of ’switching on’ and ’switching off’ of the interaction requires energy to be deposited

in, or drawn from, a work reservoir.

We have now constructed a suitable Hamiltonian, and a unitary evolution operator, that en-

capsulates the expected behaviour of the gas and piston system, when the gas is confined to one

side of the piston. We now turn to the case where the gas can be in a superposition.

5.3.3 Piston with Gas on both sides

This subsection will demonstrate one of the main results of this Chapter, that the superposition

of gas states does not lead to a stationary piston.

We will extend the results of the previous subsection to include the situation where the gas is

confined entirely to the right. The combination of the left and right unitary evolution operators

will then be shown to produce a unitary evolution operator that acts upon the entire space of the

gas and piston system, including situations where the gas is in a superposition of being on the left

and right side of the piston. Applying this unitary operator to the superposition of gas states and

shows that, rather than staying in the center, the piston moves into an entangled superposition of

states, contrary to the arguments of Zurek and of Biedenharn and Solem. We will then show how

this result generalises beyond the specific unitary evolution operator constructed here. Finally we

will examine how this evolution affects the internal energy of the one atom gas.

It is evident that had we considered the situation where the gas was confined entirely to the

right of the piston, we would have obtained the Hamiltonians:

Hρ
τ2 =

∑

l

1
τ

∑

a,l

a |Ral〉 〈Ral |

Hρ
G2 =

0∑

n=¡j

ρ(Yn)Hρ
G2(Yn)

with

Hρ
G2(Yn) =

∑

l

4ε

(
l

1− p− Yn

)2

|Ψρ
l (Yn)〉 〈Ψρ

l (Yn) |

|Ral〉 =
¡1∑

n=¡j+1

{
eina |Ψρ

l (Yn)ΦR(Yn)〉+ e¡ina |Ψρ
l (Yn)ΦL(Yn)〉}

+ |Ψρ
l (0)Φ(0)〉+ eija |Ψρ

l (−1 + p)Φ(−1 + p)〉

and the gas state |Ψρ
l (Yn)〉 represents the gas confined entirely to the right of the piston (Yn + p <

X < 1), with wavefunction

Ψρ
l (Yn, X) = 〈X |Ψρ

l (Yn)〉 =

√
2

L(1− p− Yn)
sin

(
lπ

1−X

1− p− Yn

)

7The Hamiltonian HT2 is time dependant
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During an interaction period, in which Hρ
τ2 is ’switched on’, the unitary evolution operator is

Uρ
P2(τ) =

∑

l

{
¡2∑

n=¡j+1

|Ψρ
l (Yn+1)ΦR(Yn+1)〉 〈Ψρ

l (Yn)ΦR(Yn) |

+
¡1∑

n=¡j+2

|Ψρ
l (Yn¡1)ΦL(Yn¡1)〉 〈Ψρ

l (Yn)ΦL(Yn) |

+ |Ψρ
l (0)Φ(0)〉 〈Ψρ

l (Y¡1)ΦR(Y¡1) |
+ |Ψρ

l (Y¡1)ΦL(Y¡1)〉 〈Ψρ
l (0)Φ(0) |

+ |Ψρ
l (−1 + p)Φ(−1 + p)〉 〈Ψρ

l (Y¡j+1)ΦL(Y¡j+1) |
+ |Ψρ

l (Y¡j+1)ΦR(Y¡j+1)〉 〈Ψρ
l (−1 + p)Φ(−1 + p) |} (5.13)

We now need to construct a Hamiltonian and corresponding unitary time evolution operator

that acts upon the Hilbert space for the gas particle on either (or both) sides of the piston. The

natural assumption would be to use:

HT2 = h(t)
[
Hλ

τ2 + Hρ
τ2

]
+ (1− h(t))

[
Hλ

G2 + Hρ
G2

]
+ HP

where h(t) is again a time dependant function, zero when the pressure interaction between the

piston and gas is ’switched off’ and one otherwise. The question is whether the left and right

Hamiltonians can be added without changing the resultant unitary evolution. We will be able

to answer this affirmatively from the fact that left and right Hamiltonians, and their respective

unitary evolution operators, act upon disjoint subspaces of the joint gas-piston Hilbert space.

Firstly, we must prove that the addition of the Hamiltonians leads to an operator that acts upon

the whole of the joint system Hilbert space. This will be the case if the states |Ψα
l (Yn)ΦB(Yn)〉

form an orthonormal basis for the joint Hilbert space.

Consider the inner product:

〈Ψα
k (Ym)ΦA(Ym)

∣∣∣Ψβ
l (Yn)ΦB(Yn)

〉
= δnmδαβδklδAB (5.14)

• δnm and δAB come from the orthonormality of the different piston states (Equation 5.9).

• δαβ clearly holds if the wavefunctions of the α and β gas states have no overlap. A right

gas wavefunction is non-zero only to the right of the piston position. Similarly a left gas

wavefunction is non-zero only to the left of the piston position. The right and left gas

wavefunctions can therefore only be overlapping if their respective piston states are to the

left and right of the other. If this is the case, then Yn 6= Ym and then δnm guarantees

orthogonality, so the joint states are orthogonal.

• δkl is certainly true for wavefunctions where α and β are the same. The δαβ term then

automatically prevents interference between these states in the combined Hilbert space.

For any given piston position, the combination of left and right gas states will span the subspace

of the gas states, and the piston states span the piston subspace, so the above states form an
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orthonormal basis for the joint space. This basis splits into two disjoint subspaces, corresponding

to the gas on the left or right of the piston.

Now let us consider a general property of unitary operators acting upon subspaces. If Ua acts

entirely upon the subspace Sa and Ub acts upon Sb, each unitary operator can be extended to act

upon the entire space ST = Sa ⊕ Sb by means of:

UT
a = Ua ⊕ Ib

UT
b = Ia ⊕ Ub

where Ia and Ib are the identity operators upon Sa and Sb respectively. It is therefore possible to

form the joint operator

UT = Ua ⊕ Ub = UT
a UT

b = UT
b UT

a

The commutativity implies that, with a unitary operator written in the form U = eiK , where K

is a Hermitian operator

UT = eiKT

= eiKaeiKb = ei(Ka'Kb)

Applying this back to the equation of motion,

ih̄
∂U

∂t
= HU

it is deducible that if Ha and Hb are Hamiltonians defined upon disjoint subspaces, and Ua and

Ub are their associated evolution operators, then the joint Hamiltonian HT = Ha + Hb has an

associated evolution operator given by UT . This proves that the solutions for the separate cases

of the gas confined to the left and right side of the piston can be combined into a single unitary

evolution operator for the combined Hilbert space.

Combined Evolution Operator

We have now shown that the complete unitary evolution operator for the combined gas piston

system, with the interaction ’switched on’, is

UT2(τ) = Uρ
P2(τ)⊕ Uλ

P2(τ)

To study the properties of this evolution we will simplify the operator in two ways. Firstly,

we will allow the interaction to run for exactly the time necessary for the gas wavefunction to

completely expand or compress. This will take j = 1¡p
δ steps, and will result in a unitary evolution

UT2(jτ) = (UT2(τ))j .

Secondly, we will start with only those states for which the piston is in the central position and

only look at those states that occur from UT2(jτ) acting upon this initial subspace.

With these two simplifications, the evolution operator becomes

UT2 =
∑

l

|Ψρ
l (−1 + p)Φ(−1 + p)〉 〈Ψρ

l (0)Φ(0) |
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+ |Ψρ
l (0)Φ(0)〉 〈Ψρ

l (−1 + p)Φ(−1 + p) |
+

∣∣Ψλ
l (1− p)Φ(1− p)

〉 〈
Ψλ

l (0)Φ(0)
∣∣

+
∣∣Ψλ

l (0)Φ(0)
〉 〈

Ψλ
l (1− p)Φ(1− p)

∣∣

If we apply this evolution operator to an initial state, where the gas is in a superposition of

being on both sides of the piston:

|χinitial〉 =
(
α |Ψρ

l (0)〉+ β
∣∣Ψλ

m(0)
〉) |Φ(0)〉

this state will evolve into

|χfinal〉 = α |Ψρ
l (−1 + p)Φ(−1 + p)〉+ β

∣∣Ψλ
m(1− p)Φ(1− p)

〉

This demonstrates the central result of this Section. Guided only by the argument that the confined

one-atom gas is capable of pushing the piston, we have shown that the condition of unitarity leads

to an evolution operator which does not leave the piston stationary when the gas is initially in a

superposition. This is contrary to the arguments of Zurek and of Biedenharn and Solem. However,

it is also the case that the piston is now in an entangled quantum superposition, so the situation

is still quite different from the classical case.

We have examined the piston gas interaction in considerable detail, in order to carefully demon-

strate that the evolution operator UT2 can be derived from a continuous expansion of the gas states

and is consistent with the agreed behaviour of the one atom gas when it is confined. The unitary

operator, however, was not derived from a particularly realistic interaction Hamiltonian. We will

now present a simple argument that a less idealised Hamiltonian would produce the same result.

The key property is that the confined one atom gas can expand adiabatically against the piston.

If the gas is initially on the right of the piston, this expansion is given by some unitary operation

U

U |Ψρ
l (0)〉 |Φ(0)〉 = |Ψρ

l (−1 + p)〉 |Φ(−1 + p)〉

while if the gas is initially to the left, the expansion is

U
∣∣Ψλ

l (0)
〉 |Φ(0)〉 =

∣∣Ψλ
l (1− p)

〉 |Φ(1− p)〉

These equations8 must be derivable from any interaction Hamiltonian H that, over a sufficiently

long period, allows the adiabatic expansion of a one atom gas. Provided the two expansions can

be combined into a single unitary operator, and we have shown that they can, it follows from the

linearity of U that a superposition of gas states leads to the same entangled superposition of piston

and gas states as we reached with UT2 above. The piston state will not be stationary, even with a

more realistically derived Hamiltonian.
8up to a phase factor
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Expansion of the Gas States

We will now examine the effect of the expansion upon the internal energy states of the one atom

gas. It is assumed that, as long as τ is sufficiently large, or equivalently, that the expansion takes

place sufficiently slowly, the adiabatic theorem will apply, and there will be no transitions between

eigenstates. However, the internal energy eigenstates and eigenvalues continuously change as the

piston position Yn changes. This forms the basis of the ’work’ that will be extracted from the

expansion of the gas.

For an initial, odd symmetry state,
∣∣Ψodd

l

〉
the insertion of the piston makes negligible change

upon the energy, but splits the wavefunction into a superposition of left and right wavefunctions

Ψλ
l (0) and Ψρ

l (0). The energy of this state is approximately 4εl2. As the piston moves into a

superposition, the energies of the left and right states go down, until at the end of the expansion,

the internal energy of the gas state is approximately εl2.

The reason for this can be seen from the wavelength, and node density of the gas wavefunction.

The wavefunction for a left gas state is

Ψλ
l (Yn, X) =

√
2

L(Yn + 1− p)
sin

(
lπ

1 + X

Yn + 1− p

)

The number of nodes in this wavefunction is constant, and equal to half the number of nodes in

the initial odd symmetry wavefunction. When the expansion has finished, these nodes are spread

over twice the volume, so the density of nodes has decreased by a factor of two, and the energy

decreased by a factor of four.

The same is true for the right gas wavefunctions. In fact, at the end of the expansion stages,

the wavefunctions are

Ψλ
l (1− p,X) =

1√
L(1− p)

sin
(

πl

2

(
1 + X

1− p

))
; (−1 < X < 1− 2p)

Ψρ
l (−1 + p,X) =

1√
L(1− p)

sin
(

πl

2

(
1−X

1− p

))
; (−1 + 2p < X < 1)

These differ by, at most, a sign change and a shift in position of order 2p ¿ 1:

Ψλ
l (1− p,X) ≈ Ψρ

l (−1 + p,X) ≈




ψl/2 l even

ψ(l+1)/2 l odd



 (5.15)

where ψl are the unperturbed wavefunctions given in Section 5.1. The value of l is approximately

halved during the expansion.

For an initial even symmetry wavefunction, the same analysis applies, only now a single node

is inserted in the center of the wavefunction, as the piston is inserted, requiring some work. This

corresponds, neglecting terms of order p, to an energy input and output of:

Symmetry Input Output Net

Odd 0 3εl2 3εl2

Even ε(4l − 1) 3εl2 ε(l − 1)(3l − 1)
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The net energy extracted is always positive, with the single exception of the ground state, which

is the even symmetry l = 1 state. In this case one node is added, when the barrier is inserted, and

one node is removed, when the wavefunction expands, so the energy input exactly matches the

energy output. So on each cycle of the Szilard Engine, some energy is extracted, as the number of

the eigenstate is approximately halved, and the gas is left in a lower energy state than it started.

This continues until the ground state is reached, at which point no more energy can be extracted,

and the work output during the expansion phase is the work done upon the system when the

barrier is inserted.

There are two points that can be drawn from this. Firstly, this shows that energy could be

extracted from the operation of the Szilard Engine, if all the other stages of the Engine operate as

required. This energy is not energy that is inserted into the system by performing a measurement.

Secondly, the state of the one atom gas will fall to the ground state, at which point no further

energy can be extracted. In Chapter 6 the gas will be brought into contact with a heat bath. This

will allow energy to flow back into the gas, restoring the energy extracted by the expansion.

5.4 Lifting a weight against gravity

In the previous Section it was shown that the single atom gas can be made to expand against a

piston, and that this expansion is associated with a reduction in the internal energy of the gas.

We now need to incorporate the manner in which that internal energy is converted into work. The

paradigm of work being performed is taken to be the raising of a weight.

In the Popper version of the Szilard engine, it is the connection of a weight on either side of

the engine that is supposed to allow work to be extracted without a measurement of the position

of the gas particle (Figure 4.5(b)). However, when the one atom gas is initially in a superposition

of left and right gas states, the quantum Popper-Szilard Engine becomes a superposition of left

moving and right moving piston states. To include the piston raising a weight, we must include

the weights themselves in the quantum mechanical description of the system.

A quantum weight, of mass Mw, resting upon a floor at height h, in a gravitational field g is

described by the Schrödinger equation

HW (h)An(z, h) =
(
− h̄

2Mw

∂2

∂z2
+ V (z, h)

)
An(z, h) (5.16)

with

V (z, h) =





∞ (z ≤ h)

Mwg(z − h) (z > h)





The solution to this equation is derived from the Airy function A(z) (see [AS70, NIS]) by apply-

ing the requirements that the wavefunction An(z, h) be normalised, and the boundary condition

An(h, h) = 0. This leads to wavefunction solutions
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An(z, h) =





A( z−h
L +an)p

HA′(an)
(z > h)

0 (z ≤ h)



 (5.17)

with a characteristic height, depending upon the strength of the gravitational field and the

mass of the weight

H =
(

h̄2

2M2
wg

) 1
3

and an energy eigenvalue

En = (h− anH)Mwg

The values an correspond to the values of z for which the Airy function A(z) = 0. These values

are always negative, and become increasingly negative as n increases. For large n they have the

asymptotic form an = − (
3πn
2

) 2
3 . A0(z) is the first derivative of the Airy function. Note that

An (z, h) = An(z − h, 0). The first, fifth and tenth eigenstates are shown in Figure 5.4(a). We will

Figure 5.4: Airy Functions for a Mass in Gravitational Field

proceed as before, by considering the gas on one side of the piston (the left), and lifting a weight

attached to that side, by raising the floor below it. From now on, when referring to the piston, or

it’s position, we will be referring to the entire system of piston, pulleys, and ’pan’ supporting the

weight.

If the floor is raised through a distance δh the change in energy will be δE = Mwgδh (which

is independant of the eigenstate9). By contrast, when the piston expands through a distance δY,

9The old set of eigenstates An(x) will transform into new eigenstates An(x−δh). If the floor is raised sufficiently

slowly, then by the adiabatic theorem, there will be no transitions between states.
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the change in internal energy of the n’th eigenstate of the gas will be δEn = − 8εn2

(1¡p+Y )3 δY . If the

expansion of the gas is to exactly supply the energy to lift the weight, a gearing mechanism that

raises the weight through a different distance than that moved by the piston is required, so that

h = h(Y ) and

∂h

∂Y
=

8εn2

Mwg(1− p + Y )3

However, the height raised should not be dependant upon the specific eigenstate of the gas

as there will be a statistical ensemble of gas states. We cannot arrange for pulley connecting the

piston to the weight to have a different gearing ratio for different states of the gas. Instead a mean

gearing ratio must be used, such as

∂h

∂Y
=

α

(1− p + Y )3

The exact form of the function h(Y ) can only be determined when we know the statistical

ensemble, in Section 6.410. For now we will simply represent the gearing by the function h(Y ). The

final height of the floor of the raised weight is hT = h(1− p) and we will assume h(0) = 0. We will

simplify the Dirac notation by dropping the h, so that the wavefunction An(z, h(Y )) = 〈z |An(Y )〉.
Figure 5.4(b) shows the effect upon the fifth eigenstate A5(z, h) as the floor height is raised.

Following the same procedure as in Section 5.3 above, the subsystem internal energy for the

lefthand weight is given by the Hamiltonian

Hλ
W2 =

∑
n

ρ(Yn)HW (h(Yn)) (5.18)

where ρ(Yn) = |ΦR(Yn)〉 〈ΦR(Yn) |+ |ΦL(Yn)〉 〈ΦL(Yn) | and we can write

HW (h(Yn)) =
∑
m

(h(Yn)− amH)Mwg
∣∣Aλ

m(Yn)
〉 〈

Aλ
m(Yn)

∣∣

We now need to construct a ’raising weight’ unitary operator UW3(t) to describe the joint motion

of the combined gas, piston and weights. If we look at the situation where the gas is located on

the left, and only include the description of the lefthand weight, the appropriate unitary operator

is

Uλ
W3(τ) =

∑

l,m

{
j¡2∑
n=1

∣∣Aλ
m(Yn+1)Ψλ

l (Yn+1)ΦR(Yn+1)
〉 〈

Aλ
m(Yn)Ψλ

l (Yn)ΦR(Yn)
∣∣

+
j¡1∑
n=2

∣∣Aλ
m(Yn¡1)Ψλ

l (Yn¡1)ΦL(Yn¡1)
〉 〈

Aλ
m(Yn)Ψλ

l (Yn)ΦL(Yn)
∣∣

+
∣∣Aλ

m(1− p)Ψλ
l (1− p)Φ(1− p)

〉 〈
Aλ

m(Yj¡1)Ψλ
l (Yj¡1)ΦR(Yj¡1)

∣∣
10The insensitivity of h(Y ) to n means that there will be a difference between the energy extracted from the

expanding gas and the energy put into raising the weight. This will have to be drawn from a work reservoir.

Fortunately it will be shown, in Section 6.4, that the energy drawn from the work reservoir can be made negligible.
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+
∣∣Aλ

m(Yj¡1)Ψλ
l (Yj¡1)ΦL(Yj¡1)

〉 〈
Aλ

m(1− p)Ψλ
l (1− p)Φ(1− p)

∣∣

+
∣∣Aλ

m(0)Ψλ
l (0)Φ(0)

〉 〈
Aλ

m(Y1)Ψλ
l (Y1)ΦL(Y1)

∣∣

+
∣∣Aλ

m(Y1)Ψλ
l (Y1)ΦR(Y1)

〉 〈
Aλ

m(0)Ψλ
l (0)Φ(0)

∣∣}

This operator expresses the same behaviour as the operator Uλ
P2(τ), in Equation 5.12, but now

includes the lifting of the weight. The first line represents the piston moving to the right, the gas

state on the left of the piston expanding slightly, and the lefthand weight rising from h(Yn) to

h(Yn+1). The second line gives the corresponding motion of the piston moving to the left, the gas

on the left compressing, and the lefthand weight being lowered slightly. Third and fourth lines

show the piston reaching the right end of the Szilard box, and the weight reaching it’s maximum

height, before the piston is reflected and starts to compress the gas while lowering the weight.

Finally the fifth and sixth lines represent the left moving piston reaching maximum compression

of the gas, on the left of the piston, in the center of the box, with the weight coming to a rest on

the floor, before the piston reverses direction under pressure from the gas, and starts to move to

the right again, with the expanding gas lifting the weight.

As Figure 5.4(b) shows, raising the weight can leave substantial overlap between states, so

that
〈
Aλ

m(Yi)
∣∣Aλ

m(Yj)
〉 6= δij in general. However, as in Equation 5.14, the orthogonality of the

piston states ensures that the operator is a permutation of orthonormal states. Furthermore, for

any given position Y of piston, and so by h(Y ) a given position of the pan under the weight, the
∣∣Aλ

m(Y )
〉

form a complete basis for the subspace of the weight. The set of joint (l, m, n,A) states
∣∣Aλ

m(Yn)Ψλ
l (Yn)ΦA(Yn)

〉
therefore spans the accessible space of the joint system, and the operator

is unitary.

We now, by symmetry, construct a similar operator for the one atom gas located entirely to the

right of the piston. Now we temporarily ignore the lefthand weights, and obtain from Equation

5.13

Uρ
W3(τ) =

∑

l,m

{
¡2∑

n=¡j+1

|Aρ
m(Yn+1)Ψ

ρ
l (Yn+1)ΦR(Yn+1)〉 〈Aρ

m(Yn)Ψρ
l (Yn)ΦR(Yn) |

+
¡1∑

n=¡j+2

|Aρ
m(Yn¡1)Ψ

ρ
l (Yn¡1)ΦL(Yn¡1)〉 〈Aρ

m(Yn)Ψρ
l (Yn)ΦL(Yn) |

+ |Aρ
m(0)Ψρ

l (0)Φ(0)〉 〈Aρ
m(Y¡1)Ψ

ρ
l (Y¡1)ΦR(Y¡1) |

+ |Aρ
m(Y¡1)Ψ

ρ
l (Y¡1)ΦL(Y¡1)〉 〈Aρ

m(0)Ψρ
l (0)Φ(0) |

+ |Aρ
m(−1 + p)Ψρ

l (−1 + p)Φ(−1 + p)〉 〈Aρ
m(Y¡j+1)Ψ

ρ
l (Y¡j+1)ΦL(Y¡j+1) |

+ |Aρ
m(Y¡j+1)Ψ

ρ
l (Y¡j+1)ΦR(Y¡j+1)〉 〈Aρ

m(−1 + p)Ψρ
l (−1 + p)Φ(−1 + p) |}

We now need to combine this into a single unitary operator. Denoting the identity operator

upon the unraised lefthand weight space by

Iλ
W =

∑
m

∣∣Aλ
m(0)

〉 〈
Aλ

m(0)
∣∣
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and that on the unraised righthand weight by

Iρ
W =

∑
m

|Aρ
m(0)〉 〈Aρ

m(0) |

we have a combined operator

UW4(τ) =
[
Uλ

W3(τ)⊗ Iρ
W

]⊕ [
Iλ
W ⊗ Uρ

W3(τ)
]

(5.19)

This unitary operator may be associated with a Hamiltonian HW4, constructed from the sub-

system interaction Hamiltonians, in the same manner as discussed above in Section 5.3, and the

complete expansion of the system of gas, piston and weights has the Hamiltonian

HT4 = (1− h(t))
[
Hλ

G2 + Hλ
W2 + Hρ

G2 + Hρ
W2

]
+ h(t)HW4 + HP

We now simplify Equation 5.19, by allowing the interaction to run for exactly the time necessary

for a complete expansion, or compression, of the one atom gas, and include only those states which

can be obtained from an initial subspace in which the piston is located in the center of the box

(Y = 0). This gives us the unitary operation

UW4 =
∑

l,m,n

∣∣Aλ
m(0)Aρ

n(h(−1 + p))Ψρ
l (−1 + p)Φ(−1 + p)

〉 〈
Aλ

m(0)Aρ
n(0)Ψρ

l (0)Φ(0)
∣∣

+
∣∣Aλ

m(0)Aρ
n(0)Ψρ

l (0)Φ(0)
〉 〈

Aλ
m(0)Aρ

n(h(−1 + p))Ψρ
l (−1 + p)Φ(−1 + p)

∣∣

+
∣∣Aλ

m(h(1− p))Aρ
n(0)Ψλ

l (1− p)Φ(1− p)
〉 〈

Aλ
m(0)Aρ

n(0)Ψλ
l (0)Φ(0)

∣∣

+
∣∣Aλ

m(0)Aρ
n(0)Ψλ

l (0)Φ(0)
〉 〈

Aλ
m(h(1− p))Aρ

n(0)Ψλ
l (1− p)Φ(1− p)

∣∣ (5.20)

This operator simply generalises the conclusions of Section 5.3, to include the two weights in

the quantum description of the Popper-Szilard Engine. With the initial state

|χinitial〉 =
(
α

∣∣Aλ
l (0)Aρ

m(0)Ψρ
n(0)

〉
+ β

∣∣Aλ
l (0)Aρ

m(0)Ψλ
n(0)

〉) |Φ(0)〉

the system will evolve into

|χfinal〉 = α
∣∣Aλ

l (0)Aρ
m(−1 + p)Ψρ

n(−1 + p)Φ(−1 + p)
〉

+β
∣∣Aλ

l (1− p)Aρ
m(0)Ψλ

n(1− p)Φ(1− p)
〉

The internal energy of the one atom gas can apparently be converted into the energy required

to lift a quantum weight, although it may leave the system of piston and weights in an entangled

superposition. This completes the analysis of the stage of the Popper-Szilard Engine shown in

Figure 4.5(b).

5.5 Resetting the Engine

The previous two Sections have analysed the interaction of the one atom gas, moveable piston and

weights, using quantum mechanics. We have seen that, contrary to the assertions of [Zur84, BS95],
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the piston is not stationary when the one atom gas is in a superposition. Instead, the joint system

evolves into an entangled superposition. This has significance for the final problem that must be

addressed in this Chapter: the issue of restoring the Popper-Szilard Engine to it’s initial state

before commencing a second cycle. As we recall, it is this, according to [LR90, pages 25-28]

that requires work to be performed upon the system. The three stages identified in Section 4.3

associated with resetting the piston position are shown in Figure 4.5(c-e) and are dealt with in

this Section.

First, for Stage (c), we must see what the effect of inserting a shelf at height hT = h(1− p) has

upon the weights. This stage is significant as the weights are quantum systems and this leads to

a wavefunction where there is a probability of finding an unraised weight above the shelf.

For Stage (d) we construct states to describe the piston when it is outside the box, and a

unitary operator that incorporates the effect upon the gas of inserting and removing the piston.

In Stage (e) we will attempt to construct a unitary operator that restores the piston to the

center, ready for re-insertion. We will find that correlating the position of the piston to the position

of the weights is necessary to attempt to return the piston to the center, but even so, cannot be

achieved without some error, due to the quantum nature of the weights shown in Stage (c).

The effects of this error will be shown to lead to a possibility of the Popper-Szilard Engine

going into reverse. The consequences of this will be evaluated in later Chapters.

5.5.1 Inserting Shelves

The insertion of the shelves on each side can be considered as the raising of an infinitely high

potential barrier at height hT = h(1−p) in the Hamiltonians of both weights. For the raised weight,

this will have no effect upon the wavefunction, as the quantum weight wavefunction An(z, h(1−p))

is non-zero only above the height hT .

For the unraised weight, however, the wavefunction An(z, 0) has a ’tail’ that, for large values of

z, has the form e−
2
3 z2/3

z1/4 . While this is small, it is non-zero and so there is always some possibility of

finding a quantum weight above the height hT . While we could attempt to treat this by an adiabatic

raising of the potential barrier, as we did for the one atom gas, the form of the wavefunction below

the shelf does not have a simple solution. Instead we will proceed by a rapid insertion of the

potential barrier, and project out the portions of the wavefunctions above and below the shelf

height.

For a given state, |An(0)〉, the projected state on finding the weight above the shelf height is

given by:

|RAn(hT )〉 =
1

αn(hT )

∫ 1

hT

|z〉 〈z |An(0)〉 dz

|αn(hT )|2 =
∫ 1

hT

|An(z, 0)|2 dz
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while the ’unraised’ state (below the shelf height) is

|UNn(hT )〉 =
1

βn(hT )

∫ hT

0

|z〉 〈z |An(0)〉 dz

|βn(hT )|2 =
∫ hT

0

|An(z, 0)|2 dz

so that

|An(0)〉 = αn(hT ) |RAn(hT )〉+ βn(hT ) |UNn(hT )〉

|αn(h)|2 is the probability of finding an unraised weight above the height h. Unfortunately,

the values of αn(hT ) and βn(hT ) do not generally have simple expressions11. However, using the

properties of Airy functions we are able to calculate approximate values of these for large values

of n. The wavefunction An(z, 0) has n nodes above the floor at z = 0, which occur at heights

Figure 5.5: Splitting Airy Function at Height h

hm = (am − an)H, where m < n (remembering that the values an, am < 0). This is shown in

Figure 5.5. When the shelf is inserted at the height of a node am, we can calculate the value of

αn(hm) from Equation 5.17, and the properties of integrals of Airy functions A(z)

∫ 1

hm

|An(z, 0)|2 dz =
1

A0(an)2H

∫ 1

(an¡am)H

A
( z

H
− an

)2

dz

11Although as An(z, 0) is a real function, αn(hT ) and βn(hT ) will always be real numbers.
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=
1

A0(an)2

∫ 1

am

A(z)2dz

=
1

A0(an)2
[−A0(z)2 + zA(z)2

]1
am

=
(

A0(am)
A0(an)

)2

If m À 1 the asymptotic value A0(am) ≈ (¡)m−1
p

π

(
3πm

2

) 1
6 leads to the result

αn(hm) =
(m

n

) 1
6

If the shelf is not inserted at the position of a node, we must interpolate between the nearest

two nodes. As αn(hm) varies slowly for large m, this will be a reasonable approximation. Using the

asymptotic value al = − (
3πl
2

) 2
3 and hm = (an − am)H to estimate an interpolated (non-integer)

value of m, we can approximate αn(h) for any shelf height from:

h =

((
3πn

2

) 2
3

−
(

3πm

2

) 2
3
)

H

m = n

(
1−

(
2

3πn

) 2
3 h

H

) 3
2

αn(h) ≈
(

1−
(

2
3πn

) 2
3 h

H

) 1
4

(5.21)

This is valid whenever the height is lower than the final node (h < −anH). If h > −anH the

shelf is inserted into the ’tail’ of the wavefunction. To estimate the value of αn(h) in this case, we

will evaluate the probability that the weight is located anywhere above the height −anH, which

must be larger than the probability of the weight located above h

αn(−anH)2 =
1

A0(an)2

∫ 1

an

A(z)2dz

=
(

A0(0)
A0(an)

)2

Using A0(0) ≈ −0.25 and n À 1 as before, this gives

αn(h)2 <
π

16

(
2

3πn

) 1
3

which may be treated as negligible. In effect, we have shown that if h >
(

3πn
2

) 2
3 H, or, equivalently,

n <
2
3π

(
h

H

) 3
2

then we can approximate

αn(h) = 0

βn(h) = 1 (5.22)

105



When

n ≥ 2
3π

(
h

H

) 3
2

we calculate αn(h) from Equation 5.21 above, and βn(h) from

βn(h) =
√

1− αn(h)2 (5.23)

This completes the calculation of the effect of inserting the shelves at height h in Stage (c) of

the Popper-Szilard cycle.

5.5.2 Removing the Piston

We will now consider Stage (d) of the cycle. The piston state is removed from the ends of the box,

effectively ’switching off’ the interaction between the gas and the piston.

Firstly, we need to introduce quantum states to describe the piston outside the box. These

will be the orthonormal states, with |φL〉,|φR〉 and |φ0〉 describing the piston outside the box, but

in the lefthand, righthand and central positions, respectively. These states also include the pulley

and pan, and so the state |φL〉 implies that the righthand weight is raised, and so on.

We now need a general unitary operator to account for the insertion and removal of the piston

from the box. This will have an effect upon the internal states of the gas. As noted in Equation

5.15, when the piston is at one or the other end of the box, the gas will be approximately in an

unperturbed energy eigenstate12 and so will be unaffected by the piston’s removal. If the piston

was in the center of the box when it was removed, however, it’s removal can have a significant

effect upon the state of the gas. This effect is the adjoint operation to inserting the piston into

the center of the box, in Section 5.2. The complete insertion and removal operator is therefore

UIR = IG ⊗ {|φL〉 〈Φ(−1 + p) |+ |Φ(−1 + p)〉 〈φL |
+ |φR〉 〈Φ(1− p) |+ |Φ(1− p)〉 〈φR |}
+UG ⊗ |Φ(0)〉 〈φ0 |+ Uy

G ⊗ |φ0〉 〈Φ(0) | (5.24)

where IG is the identity operator upon the gas states, and UG is from Equation 5.4 in the limit of

the infinitely high barrier.

5.5.3 Resetting the Piston

We now need to consider Stage (e). This is the critical stage to the argument of Leff and Rex. They

argue that Landauer’s Principle implies an expenditure of kTG ln 2 energy to reset the piston states.

However, we have suggested that the piston may be returned to |φ0〉 without such an expenditure,

by correlating it to the weights. We will now show that the piston may indeed by returned in this

way, but, due to the quantum nature of the weights, there is always some possibility of error in

the resetting mechanism.
12There will be a slight expansion of the gas states, of order 2p as the piston is removed. Technically this could

be used to perform work upon the piston during it’s removal. However, we shall ignore this effect as negligible.
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First, it will be useful to consider if we can reset the piston without correlating to the weights.

The ideal operation would include

UR1 |φL〉 = |φ0〉
UR1 |φR〉 = |φ0〉

but this is clearly non-unitary as orthogonal states are being mapped to non-orthogonal states.

The most general operation acting only upon the piston states is

UR2 |φ0〉 = a1 |φ0〉+ b1 |φL〉+ c1 |φR〉
UR2 |φL〉 = a2 |φ0〉+ b2 |φL〉+ c3 |φR〉
UR2 |φR〉 = a3 |φ0〉+ b3 |φL〉+ c3 |φR〉

Unitarity requires that the vectors ai,bi and ci (with i = 1, 2, 3) are orthonormal (or, equivalently,

the vectors α1, α2 and α3 with α = a, b, c).

To maximise the probability of the piston being returned to the center, we need to maximise

|a2|2 + |a3|2. This would imply setting a1 = 0. However, if we are not going to change the state of

the weights, the piston initially in the state |φ0〉 cannot be moved to either |φL〉 or |φR〉 as these

states both imply one of the pans is raised. We are therefore constrained to have a1 = 1 and so

there is no possibility of resetting the piston. We must, therefore, include the states of the weights.

After the piston is removed from the box, we will have combined piston and weight states of:

∣∣Aλ
m(0)Aρ

n(1− p)φL

〉
∣∣Aλ

m(1− p)Aρ
n(0)φR

〉

If we simply attempt to correlate the action on the piston with the raised and unraised states,

|Am(1− p)〉 , |Am(0)〉 we would construct a resetting operator along the lines of

UR3

∣∣Aλ
m(0)Aρ

n(1− p)φL

〉
=

∣∣Aλ
m(0)Aρ

n(1− p)φ0

〉

UR3

∣∣Aλ
m(1− p)Aρ

n(0)φR

〉
=

∣∣Aλ
m(1− p)Aρ

n(0)φ0

〉

However, the inner product of these input states is given by

〈
Aλ

m(0)Aρ
n(1− p)φL

∣∣Aλ
m(1− p)Aρ

n(0)φR

〉
=

〈
Aλ

m(0)
∣∣Aλ

m(1− p)
〉 〈Aρ

n(1− p) |Aρ
n(0)〉 〈φL |φR〉

= 0

while the inner product of the output states is

〈
Aλ

m(0)Aρ
n(1− p)φ0

∣∣Aλ
m(1− p)Aρ

n(0)φ0

〉
=

〈
Aλ

m(0)
∣∣Aλ

m(1− p)
〉 〈Aρ

n(1− p) |Aρ
n(0)〉 〈φ0 |φ0〉

=
〈
Aλ

m(0)
∣∣Aλ

m(1− p)
〉 〈Aρ

n(1− p) |Aρ
n(0)〉

6= 0
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The output states are not orthogonal as the Airy functions of the raised and unraised weight states

overlap, as shown in Figure 5.4. UR3 is still not a unitary operator.

To construct a proper unitary operator we need to correlate the movement of the piston to the

projection of the weights above or below the shelf. The relevant projection operators are

P (RA) =
∫ 1

hT

|z〉 〈z | dz

P (UN) =
∫ hT

0

|z〉 〈z | dz

However it is more useful to construct them from the raised eigenstates:

P (RA) =
∑

n

|An(1− p)〉 〈An(1− p) |

or from the projections of the unraised eigenstates:

P (RA) =
∑

n

αn(hT )2 |RAn〉 〈RAn |

=
∫ ∫ 1

hT

|z〉 〈z |
∑

n

|An〉 〈An |z0〉 〈z0 | dzdz0

=
∫ 1

hT

|z〉 〈z | dz

P (UN) =
∑

n

βn(hT )2 |UNn〉 〈UNn |

=
∫ ∫ hT

0

|z〉 〈z |
∑

n

|An〉 〈An |z0〉 〈z0 | dzdz0

=
∫ hT

0

|z〉 〈z | dz

From these it follows that:

P (RA) |An(0)〉 = αn |RAn〉
P (UN) |An(0)〉 = βn |UNn〉

P (RA) |An(1− p)〉 = |An(1− p)〉
P (UN) |An(1− p)〉 = 0

We will now examine the correlation between the state of the weights and the piston position.

There are eight orthonormal sets of states that are accessible for the combined system. These are

shown in Figure 5.6.

• (a) Both weights are resting upon the floor, below the shelf. The piston must be located in

the center of the Engine. The allowed state is:
∣∣UNλ(hT )UNρ(hT )φ0

〉

• (b) The left weight on the shelf and the right weight on the floor. The piston can be in the

center, or at the right of the engine. Allowed states are:
∣∣RAλ(hT )UNρ(hT )φ0

〉
∣∣Aλ(1− p)UNρ(hT )φR

〉
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Figure 5.6: Correlation of Weights and Piston Position

• (c) The left weight on the floor and the right weight on the shelf. The piston may now be

found either in the center, or at the left of the engine. Allowed states are:

∣∣UNλ(hT )RAρ(hT )φ0

〉
∣∣UNλ(hT )Aρ(1− p)φL

〉

• (d) Both weights are upon the shelves. The piston may be located at any of the three

locations:

∣∣RAλ(hT )RAρ(hT )φ0

〉
∣∣RAλ(hT )Aρ(1− p)φL

〉
∣∣Aλ(1− p)RAρ(hT )φR

〉

If the resetting interaction is not to change the location of the weights, these must form four

separate subspace under the operation.

We can now state the most general form of the resetting operation, consistent with the require-

ments of unitarity.

URES = |φ0〉 〈φ0 |Pλ(UN)P ρ(UN)

+ [|φR〉 〈φ0 |+ |φ0〉 〈φR |] Pλ(RA)P ρ(UN)

+ [|φL〉 〈φ0 |+ |φ0〉 〈φL |] Pλ(UN)P ρ(RA)
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+ [|φ1〉 〈φ0 |+ |φ2〉 〈φL |+ |φ3〉 〈φR |] Pλ(RA)P ρ(RA) (5.25)

The first line represents the subspace where both weights are located beneath the shelf height.

The only possible location of the piston is in the center.

The second and third lines represent one weight above and one weight below the shelf. When

the piston is located in the corresponding left or right position, we want to reset the piston by

moving it to the center. To preserve unitarity with this, the reset operator must also include a

term moving the piston initially located in the center to the appropriate left or right position.

Finally, when both weights are located above the shelf height, in line four, the weights do not

correlate to the location of the piston. The most general transformation possible is given, where

the |φj〉 states are superpositions of the |φ0〉, |φL〉 and |φR〉 states:

|φ1〉 = a1 |φ0〉+ b1 |φL〉+ c1 |φR〉
|φ2〉 = a2 |φ0〉+ b2 |φL〉+ c2 |φR〉
|φ3〉 = a3 |φ0〉+ b3 |φL〉+ c3 |φR〉

For the operation to be unitary, orthonormal states must transform into orthonormal states,

so 〈φi |φj〉 = δij . This leads to the conditions

a⁄
1a2 + b⁄

1b2 + c⁄
1c2 = 0

a⁄
1a3 + b⁄

1b3 + c⁄
1c3 = 0

a⁄
2a3 + b⁄

2b3 + c⁄
2c3 = 0

a⁄
1a1 + b⁄

1b1 + c⁄
1c1 = 1

a⁄
2a2 + b⁄

2b2 + c⁄
2c2 = 1

a⁄
3a3 + b⁄

3b3 + c⁄
3c3 = 1 (5.26)

Rearranging the expression

[|φ1〉 〈φ0 |+ |φ2〉 〈φL |+ |φ3〉 〈φR |]
= |φ0〉 {a1 〈φ0 |+ a2 〈φL |+ a3 〈φR |}

+ |φL〉 {b1 〈φ0 |+ b2 〈φL |+ b3 〈φR |}
+ |φR〉 Á0hφL〉+ a

2
〈φL|+ a3 〈

δ



a⁄
1b1 + a⁄

2b2 + a⁄
3b3 = 0

a⁄
1c1 + a⁄

2c2 + a⁄
3c3 = 0

b⁄
1c1 + b⁄

2c2 + b⁄
3c3 = 0

We can examine the effect of this operator by considering the effect upon the state where the

piston is to the left, before the shelves are inserted

∣∣Aλ
m(0)Aρ

n(1− p)φL

〉

When the shelves are inserted this becomes separated into raised and unraised portions of the

lefthand weight

αm(hT )
∣∣RAλ

m(hT )Aρ
n(1− p)φL

〉
+ βm(hT )

∣∣UNλ
m(hT )Aρ

n(1− p)φL

〉

. The operation of URES on the unraised portion of the wavefunction moves the piston to the

center. The effect of URES on the raised portion is to set the piston state to |φ2〉. This makes the

state

αm(hT )
∣∣RAλ

m(hT )Aρ
n(1− p)φ2

〉
+ βm(hT )

∣∣UNλ
m(hT )Aρ

n(1− p)φ0

〉

= αm(hT )b2

∣∣RAλ
m(hT )Aρ

n(1− p)φL

〉

+αm(hT )c2

∣∣RAλ
m(hT )Aρ

n(1− p)φR

〉

+
(
αm(hT )a2

∣∣RAλ
m(hT )

〉
+ βm(hT )

∣∣UNλ
m(hT )

〉) |Aρ
n(1− p)φ0〉

Although the resetting operation has partially succeeded, there is still some probability of finding

the piston to the left or right of the Engine, whatever choice we make for the values of ai etc.

Selection of the optimum values of the ai’s can only be made once we include the full statistical

mechanics in Chapter 6.

This completes the analysis of Stage (e) of the Popper-Szilard Engine in this chapter. We have

found that the quantum state of the weight leads to the possibility of an unraised weight being

spontaneously located above the height hT through which the raised weight has been lifted. This

possibility, combined with the requirement that the resetting operation be unitary, leads to an

imperfect resetting. This is clearly not sufficient to show that the Popper-Szilard Engine does not

work. The error in the resetting is only partial, and it is not yet certain that an optimal choice of

resetting operation could not violate the second law of thermodynamics.

5.6 Conclusions

We have examined the operation of the quantum Popper-Szilard Engine given in Figure 4.5 in

detail, explicitly constructing unitary operations for all relevant stages of the cycle. We will now

summarise this cycle, and consider the effects of the errors in the resetting operation.

There is a final unitary operation we need to add to the ones constructed. This is the act of

inserting and removing the shelves at height hT , at Stages (c) and (f). This can be treated by
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assuming a narrow potential barrier is inserted in the Hamiltonian in Equation 5.16. The result

is a time dependant perturbation of the Hamiltonian, exactly equivalent to the raising or lowering

of the potential barrier in the one atom gas, in Section 5.2. The unitary operator for this can be

constructed in the same manner as the operator UG in Equation 5.4. We will not explicitly do

this, but will simply describe the unitary operator corresponding to the insertion of the shelves by

US and their removal by Uy
S . The complete cycle of the Popper-Szilard Engine is now given by the

unitary operation:

UT = Uy
SURESURIUSUW4URI (5.27)

Moving from right to left through UT , the successive stages are:

• URI Stage (a) Equation 5.24

• UW4 Stage (b) Equation 5.20

• US Stage (c) above

• URI Stage (d) Equation 5.24

• URES Stage (e) Equation 5.25

• Uy
S Stage (f) above

We will now review the effect of UT on the system.

5.6.1 Raising Cycle

If we start from the state where the piston is in the center, outside the box, and both weights are

at rest upon the floor, the state is
∣∣Aλ

m(0)Aρ
n(0)φ0

〉

We can now see how the operation of UT attempts to reproduce the cycle in Figure 4.5.

• URI The insertion of the piston in the center of the box (Section 5.2)

• UW4 The expansion of the one atom gas against the piston, lifting one of the weights. This

may leave the system in an entangled superposition (Sections 5.3, 5.4).

• US Inserting shelves on both sides at height hT .

• URI Removing the piston from the box (Section 5.5)

• URES Resetting the piston by correlating it’s state to the location of the raised or unraised

weights (Section 5.5)

• Uy
S Removing the shelves and allowing any raised weights to fall to the floor
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This will be described as a ’raising cycle’.

We saw in Section 5.5 above, that this leaves the Engine in a superposition of states. To

complete the cycle, we want the Engine to be in state

∣∣Aλ
m(0)Aρ

n(0)φ0

〉

at the end of Stage (f). However, due to the imperfect nature of the resetting, the Engine is in a

superposition with states such as

∣∣Aλ
m(0)Aρ

n(1− p)φL

〉
∣∣Aλ

m(1− p)Aρ
n(0)φR

〉

We must now consider the effect of starting a new cycle with these states.

5.6.2 Lowering Cycle

If the Engine starts with a raised weight on the righthand side, and the piston to the left side of

the Engine, the state will be
∣∣Aλ

m(0)Aρ
n(1− p)φL

〉

We must now consider the effect of UT on this state.

• URI The piston is inserted into the box on the lefthand side. Negligible compression of the

gas takes place. The state is now

∣∣Aλ
m(0)Aρ

n(1− p)Ψρ
l (−1 + p)Φ(−1 + p)

〉

• UW4 The combined gas, piston and weight system now runs through a compression phase.

The righthand weight is lowered, and the piston moves from the left to the center of the

box, compressing the gas to the right. The energy of the weight is reduced and the internal

energy of the gas is raised. The system is left in state

∣∣Aλ
m(0)Aρ

n(0)Ψρ
l (0)Φ(0)

〉

• US At the end of Stage (b) both weights are in the unraised state. When the shelves emerge

there is a possibility that either, or both, could be trapped above the shelf height hT . This

involves rewriting

|Amλ(0)Aρ
n(0)Ψρ

l (0)Φ(0)〉 =
(
αm(hT )αn(hT )

∣∣RAλ
m(hT )RAρ

n(hT )
〉

+αm(hT )βn(hT )
∣∣RAλ

m(hT )UNρ
n(hT )

〉

+βm(hT )αn(hT )
∣∣UNλ

m(hT )RAρ
n(hT )

〉

+βm(hT )βn(hT )
∣∣UNλ

m(hT )UNρ
n(hT )

〉) |Ψρ
l (0)Φ(0)〉
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• URI The piston is removed from the center of the box. As the one atom gas was confined to

the right of the piston, this will have a significant effect upon the gas state, as it is allowed to

expand to occupy the entire box. This involves replacing |Ψρ
l (0)〉 with 1p

2

(|Ψeven
l 〉 −

∣∣Ψodd
l

〉)

and |Φ(0)〉 with |φ0〉.

• URES The resetting operation moves the piston according to the location of the weights. As

noted in Stage (c), all four combinations of weight states occur with some probability. After

this operation the piston may therefore be found in the left, right or central position

(
αm(hT )αn(hT )

∣∣RAλ
m(hT )RAρ

n(hT )φ1

〉

+αm(hT )βn(hT )
∣∣RAλ

m(hT )UNρ
n(hT )φR

〉

+βm(hT )αn(hT )
∣∣UNλ

m(hT )RAρ
n(hT )φL

〉

+βm(hT )βn(hT )
∣∣UNλ

m(hT )UNρ
n(hT )φ0

〉) 1√
2

(|Ψeven
l 〉 − ∣∣Ψodd

l

〉)

• US The shelves are removed, allowing unsupported weights to fall to the floor. If the piston

state is in the |φL〉 or |φR〉, then the corresponding right or lefthand weight will be supported

at height hT . However, if the piston state is |φ0〉 then both weights will fall to the floor.

We will describe this as the ’lowering cycle’ and it is shown in Figure 5.7. The key point to this

cycle is that energy is transferred from the weight to the gas during Stage (b) . This is in the

opposite direction to the ’raising cycle’. At the end of the ’lowering cycle’ the piston may again

be found, outside the box, in the lefthand, righthand or central positions. If the piston is in the

center, then the next cycle of UT will result in a ’raising cycle’. If the piston is instead in the

left or right states, then a weight is trapped at the height hT and the system will continue with

another ’lowering cycle’.

5.6.3 Summary

This completes the analysis of the quantum mechanics of the Popper-Szilard Engine. We have

demonstrated how the Engine proceeds without the need for external measurements or interven-

tions from ’demons’. The arguments of [Zur84, BS95] do not appear to be sustained with respect

to the quantum state of the one atom gas.

With respect to the arguments of [LR90] we have shown that an imperfect resetting does appear

to be possible, without the need to perform work upon the system. However, the imperfect resetting

leads to the possibility of the cycle of the Popper-Szilard Engine reversing from a ’raising cycle’ to

a ’lowering cycle’. However, at the end of a lowering cycle, there is a possibility of reversing back

onto a raising cycle. The Engine therefore switches between the two cycles.

On raising cycles, energy is transferred from the one atom gas to the weight. On lowering

cycles, the energy in pumped in the opposite direction. To avoid violating the second law of

thermodynamics, the energy flow must go from the hotter to the colder system. This requires
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Figure 5.7: The Lowering Cycle of the Popper-Szilard Engine

a delicate balance of probabilities. If the temperature of the gas heat bath is lower than the

temperature of the weight heat bath, then the Engine must spend more time transferring heat

from the weights to the gas, and so must spend most of it’s time on the lowering cycle. Conversely,

if the one atom gas is hotter than the weights, the Engine must spend most of it’s time on the

raising cycle. This must continue to hold true for all possible choices of the parameters for URES

given in Equation 5.26. To verify that this is the case, we must introduce the statistical mechanical

properties of the Engine. We will do this in the next Chapter.
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Chapter 6

The Statistical Mechanics of

Szilard’s Engine

In Chapter 5 we examined the physical limitations imposed by quantum theory upon the inter-

actions of the microstates of the Popper-Szilard Engine. This would be sufficient if we wished to

analyse the Engine as a closed system, initially in a definite quantum state. However, this is not

the problem for which the thought experiment was designed. The purpose of the analysis is to

decide whether the Engine is capable of transferring energy between heat baths in an anti-entropic

manner. For this we need to introduce statistical mechanical concepts. These concepts will be

introduced and applied in this Chapter, and will demonstrate that such anti-entropic behaviour is

not possible.

Section 1 summarises the statistical mechanical concepts which will be used. This includes

ensembles, heat baths and generalised pressure. With the exception of the temperature of the heat

baths, we will avoid making use of any explicitly thermodynamic quantities, such as entropy or

free energy.

Sections 2 and 3 will apply these concepts to the gas and the weight subsystems, respectively,

paying particularly close attention to the changes in pressure and internal energies of these systems,

for different piston positions. In Section 4 we will use the results of the previous two sections to

calculate the optimum gearing ratio h(Y ) for the piston and pulley system (see Section 5.4).

In Sections 5 and 6 we will put together these results to describe the behaviour of the Popper-

Szilard Engine for the raising and lowering cycles, respectively. Section 7 will finally analyse the

mean flow of energy between the gas and weight heat baths. It will now be possible to show that,

for any choice of temperatures of the two heat baths, and for any choice of resetting operation

URES , the long term behaviour of the Engine is to produce a flow of energy from the hotter to

the colder heat bath. The Popper-Szilard Engine is therefore unable to produce anti-entropic heat

flows.
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6.1 Statistical Mechanics

Statistical Ensemble

Many textbooks ([Pen70, Wal85], for example) introduce statistical mechanics as the study of

systems which have a large number of constituents. It has been argued [Pop74, Cha73] that this is

part of the explanation of the Szilard Paradox. However, is not necessary that a system be large

for statistical mechanics to be used. Statistical mechanical concepts can be applied whenever the

preparation of a system, however large or small, does not uniquely specify the initial state of the

system. Instead we must specify the probabilities pi of the different possible initial states |Γi〉.
We will describe such a system using the Gibbs ensemble, where we conceive of an infinite num-

ber of equivalently prepared systems, with the initial states |Γi〉 occurring with relative frequencies

pi. The ensemble is represented by the density matrix ρ =
∑

i pi |Γi〉 〈Γi | ([Tol79, BH96a], for

example). Obviously such an ensemble does not actually exist. However, if we use the preparation

method to prepare a finite number of systems, with no special ordering, then the statistics of the

outcomes of the real systems will approach the statistics of the ensemble1 as the number of systems

becomes large. The ensemble is a representation of the mean behaviour when the same experiment

is repeated a large number of times, and applies even when each experiment is performed upon a

system which consists of only a few constituents.

In our case we are therefore supposing an infinite number of Popper-Szilard Engines, each

connected to their own heat baths and each containing only a single atom. We will describe the

behaviour of this ’representative ensemble’ of Engines as the mean behaviour of the Popper-Szilard

Engine.

Generalised Pressure

The mean energy of a system is given by E = Tr [ρH], where H is the Hamiltonian. If the |Γi〉
are energy eigenstates, with eigenvalues Ei, then this leads to E =

∑
i piEi, as we would expect.

Typically, these Ei depend upon both internal co-ordinates (such as the location of the atoms in a

gas) and external co-ordinates (such as the location of the walls surrounding the gas). The energy

is a property of the internal co-ordinate (such as the kinetic energy of the motion of the atoms in

the gas), while the external parameters define the boundary conditions upon the eigenstates.

If the system is in state |Γi〉 and an external parameter (X for example) is changed, this affects

the eigenstate, and through it the energy of the state. The force that is required to change the

parameter is given by ∂Ei

∂X . For the ensemble the mean force, or generalised pressure, on co-ordinate

X is

P (X) =
∑

i

pi(X)
∂Ei

∂X

1In [Per93] the large finite number of systems is referred to as an ’assembly’. If instead the systems can be

considered as occurring in a particular order, it may be more accurate to describe them as a ’string’[Zur89a].
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The work done, or mean energy required, to change the co-ordinate from X1 to X2 is therefore

W =
∫ X2

X1

∑

i

pi(X)
∂Ei

∂X
dX

Heat Baths

An infinitesimal change in the Energy of a system is given by dE =
∑

i pidEi +
∑

i Eidpi. As

dEi = ∂Ei

∂X dX we can see the first term corresponds to the work, dW , done upon the system. The

second term corresponds to the change in heat, dQ =
∑

i Eidpi, and requires the system to be in

contact with an environment (in an isolated system, occupation probabilities do not change). The

’environment’ system we will use will be the canonical heat bath.

The canonical heat bath consists of a large assembly of weakly interacting systems, parame-

terised by the temperature T . Each system has an internal Hamiltonian HB . The density matrix

of individual system n, removed from the assembly, is given by the canonical ensemble:

ρn =
e¡HB(n)/kT

Tr
[
e¡HB(n)/kT

]

The ensemble of the heat bath is

ρB =
∏
n

e¡HB(n)/kT

Tr
[
e¡HB(n)/kT

]

This is the most likely distribution consistent with a given mean energy.

The most significant property of the canonical heat bath is the effect of bringing another system

into temporary contact2 with one of the heat bath subsystems. It can be shown that if a system

which is not initially described by canonical distribution, is brought into successive contact with

many systems, which are each in a canonical distribution with temperature T , the first system will

approach a canonical distribution, also with temperature T [Tol79, Par89a, Par89b, Per93].

When a system is brought into contact with a heat bath, we assume that it is in effect brought

sequentially into contact with randomly selected subsystems of the heat bath. This will gradually

bring the system into a canonical distribution with the same temperature as the heat bath, so the

density matrix of the system itself becomes

ρ =
e¡H/kT

Tr
[
e¡H/kT

]

where H is the systems internal Hamiltonian. As the heat bath subsystems are weakly interacting,

and there is a large number of them, we will assume that any energy transferred to or from the

heat bath does not significantly affect the state of the heat bath, and that any correlations that

develop between heat bath and system states are rapidly lost. This process of thermalisation, by

which the system is brought into equilibrium with the heat bath at temperature T , occurs with a

characteristic time τ , the thermal relaxation time.
2By ’temporary contact’ we mean that for a short period there is a non-zero interaction Hamiltonian affecting

the two systems

118



This property needs qualifying with regard to accessible states. It may be the case that the

Hamiltonian H can be subdivided into separate Hamiltonians H = H1 + H2 + ... where H1, H2

correspond to disjoint subspaces, between which there are no transitions, or transitions can only

take place at a very slow rate.

An example of this would be locating a particle in one of several large boxes, with the separate

Hamiltonians corresponding to the states within each box. In this case, placing the boxes in contact

with the heat bath over a time period of order τ will cause a particle to be thermalised with a given

box but would not cause transitions between boxes. The resulting thermalised density matrix ρ0

will be

ρ0 = Tr [P1ρ]
e¡H1/kT

Tr
[
e¡H1/kT

] + Tr [P2ρ]
e¡H2/kT

Tr
[
e¡H2/kT

] + . . . (6.1)

where ρ is the initial, unthermalised, density matrix and P1 is the projection operator onto

the subspace of H1 and so forth. If the contact is maintained for a much longer period of time

τ 00, so that significant numbers of transitions between the Hi states can take place, the complete

thermalisation will occur and

ρ00 =
e¡H/kT

Tr
[
e¡H/kT

]

It should be noted that this implies there can be more than one thermal relaxation time associated

with a given system.

Developing this further, we must consider conditional Hamiltonians

H = Π1H1 + Π2H2 + . . .

where the Π1’s are orthogonal projection operators on states of a second quantum system, or Hilbert

space. An example of this might be a situation where a system has spin, but the interaction between

the system and the heat bath does not allow transitions between spin states (or these transitions

are suppressed) and the Hi do not explicitly include the spin states. In this case the thermalisation

will take place separately within the separate spin subspaces.

In this case the effect of contact with the heat bath will be to thermalise the density matrix to

ρ000 = Tr1 [Π1ρ]
e¡H1/kT

Tr
[
e¡H1/kT

] + Tr1 [Π2ρ]
e¡H2/kT

Tr
[
e¡H2/kT

] + . . . (6.2)

where the trace is taken only over the Hilbert space of the first system. This produces a density

matrix for the joint system, which has the property of no interference terms between the subspaces

of the second system. However, we should be clear that there has been no interaction between

the heat bath and the second Hilbert space. Again, if there is a process by which transitions take

place between the states of the second Hilbert space, then the complete thermalisation of the joint

system may take place, with a second, longer thermal relaxation time.

Within the context of the Popper-Szilard Engine, Equation 6.1 will apply to situations where

a single Hilbert space is divided into a tensor sum of subspaces. This includes the one atom gas,

when the partition is raised in the center of the box, or the unraised weight when the shelf is

inserted. The Hamiltonian in Equation 5.7 shows how the gas Hilbert space divides into the two

119



disjoint subspaces. Equation 6.2 applies when there is a joint Hilbert space composed of a tensor

product of two (or more) Hilbert spaces, only one of which is in thermal contact with a heat

bath. This will apply to the joint systems of the gas and piston located in the box, and to the

joint system of a raised weight and the pan located beneath it. Equations 5.11 and 5.18 give the

relevant conditional Hamiltonians for these cases.

In general there may be many relaxation times associated with the thermalisation of a system,

depending upon the different subspaces and interactions with the heat bath. We will assume all

relaxation times are either very short (or effectively instantaneous), or very long (or effectively

infinite), with respect to the time period over which the Popper-Szilard Engine operates.

The following transitions will be assumed to have short thermal relaxation times:

• Transitions between one atom gas states when the partition is not inserted in the box.

• Transitions between one atom gas states on the same side of the piston or partition.

• Transitions between quantum weight states when the shelves are not present.

• Transitions between quantum weight states on the same side of the shelf.

Transitions with long thermal relaxation times are assumed to be:

• Transitions of the one atom gas states across the partition or piston.

• Transitions of the quantum weight states across the shelf.

• All transitions of the piston states.

We will also always assume that temperatures T are high enough for us to approximate sum-

mations over energy eigenstates by integrations of the form

∑
n=1,1

e¡ En
kT f(En) ≈

∫ 1

0

e¡ E(n)
kT f(E(n))dn

where the eigenvalue relations for integer n are replaced by the corresponding functions of a

continuous parameter n, so that En = E(n). This approximation is valid if kT is much greater

than the spacing of the energy levels.

6.2 Thermal state of gas

In this Section we will analyse the effect on the one atom gas of bringing it into contact with a

heat bath at temperature TG. It is assumed that the thermal relaxation time is very short.

We will start by analysing the energy levels, and mean internal energy of the one-atom gas, in

equilibrium, before and after the partition is inserted. Proceeding in a similar manner to Chapter

5 we will then consider the situation where the one atom gas is confined entirely to the left of

the partition, at some variable position Y . Finally we will consider the situation where there is a

moving piston in the box.
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6.2.1 No partition

The initial Hamiltonian in Equation 5.1, can be written as

HG0 =
∑

n

εn2 |ψn〉 〈ψn |

In contact with a heat bath at TG, the gas will be in an initial equilibrium ensemble of3

ρG0 =
1

ZG0

∑
n

e
¡ εn2

kTG |ψn〉 〈ψn | (6.3)

ZG0 =
∑

n

e
¡ εn2

kTG

≈
∫

e
¡ εn2

kTG dn =
1
2

√
πkTG

ε

The mean internal energy of the gas states is given by

〈EG0〉 ≈ 1
ZG0

∫
εn2e

¡ εn2
kTG dn =

1
2
kTG

which confirms the usual formula for the internal energy of a gas with a single degree of freedom.

6.2.2 Partition raised

Raising of the partition in the center of the box is equivalent to applying the operator UG, in

Equation 5.4. The final Hamiltonian in Equation 5.7 from Section 5.2 is

HG1 =
4ε

(1− p)2
∑

l

l2
{∣∣Ψλ

l

〉 〈
Ψλ

l

∣∣ + |Ψρ
l 〉 〈Ψρ

l |
}

which, taking account a degeneracy factor of 2, leads to

ρG1 =
1

ZG1

∑

l

e
¡ ε

kTG
( 2l

1−p )2 {∣∣Ψλ
l

〉 〈
Ψλ

l

∣∣ + |Ψρ
l 〉 〈Ψρ

l |
}

(6.4)

ZG1 =
∑

n

2e
¡ ε

kTG
( 2l

1−p )2

≈ 1− p

2

√
πkTG

ε

〈EG1〉 ≈ 1
ZG1

∫
2ε

(
2l

1− p

)2

e
¡ ε

kTG
( 2l

1−p )2

dl =
1
2
kTG

The fact that the internal energy has not changed does not mean that no work has been

performed upon the system, only that any energy that enters the gas while inserting the partition

has been transferred to the heat bath. We will now prove that the insertion of the partition requires

negligible work.

As the partition is inserted, the odd and even wavefunctions are perturbed, leading to shifts in

energy. There will also be a shift in occupation probabilities, if the gas is kept in contact with a

heat bath. As the size of the energy change is small compared with the initial energy, for all but

the lowest eigenstates, we can assume that the change in occupation probabilities is negligible.
3In some situations the normalisation constant Z will coincide with the thermodynamic partition function.

However, this will not necessarily be the case, so we will not make use of this fact in this Chapter.

121



For odd symmetry states, the change in energies is given by

W
(odd)
l = ε

(
2l

1− p

)2

f(p)

f(p) = p(2− p)

so the work done is

W (odd) =
ε

Z(odd)

∑

l

(
2l

1− p

)2

f(p)e¡ ε
kTG

(2l)2

Z(odd) =
∑

l

e
¡ ε

kTG
(2l)2 ≈ 1

4

√
πkTG

ε

W (odd) ≈ ε

Z(odd)

(
2

1− p

)2

f(p)
2Z3

odd

π
=

1
2kTG

(1− p)2
f(p)

For even symmetry states, the energy shift is more complicated

W
(even)
l = ε

(
1

1− p

)2 [
f(p)4l2 − (4l − 1)(1− p)2

]

W (even) =
ε

Z(even)

∑

l

(
1

1− p

)2 [
f(p)4l2 − (4l − 1)(1− p)2

]
e

¡ ε
kTG

(2l¡1)2

Z(even) =
∑

l

e
¡ ε

kTG
(2l¡1)2

This requires a substitution 2y = 2l − 1 to give

W (even) =
ε

Z(even)

∑
y

(
1

1− p

)2 [
f(p)4y2 + 4y + 1

]
e

¡ ε
kTG

(2y)2

Z(even) ≈ 1
4

√
πkTG

ε

W (even) ≈ ε

Z(even)

(
2

1− p

)2
[
f(p)

2
(
Z(even)

)3

π
+

2
(
Z(even)

)2

π
+

Z(even)

4

]

≈
1
2kTG

(1− p)2

[
f(p) + 4

√
ε

kTG
+ 2

(
ε

kTG

)]

The mean work done is approximately W = 1
2W (odd)+ 1

2W (even) . As can be seen, when p ¿ 1 and

ground state energy ε ¿ kTG, then W ¿ 1
2kTG. This confirms that the insertion of the barrier

does not require a significant amount of work, when the barrier is narrow and the internal energy

is high with respect to the ground state.

6.2.3 Confined Gas

If we restrict the gas to be located on the lefthand side of the partition, the density matrix only

includes half the states

ρλ
G2 =

1
ZG2

∑

l

e
¡ ε

kTG
( 2l

1−p )2 ∣∣Ψλ
l

〉 〈
Ψλ

l

∣∣ (6.5)

ZG2 =
∑

n

e
¡ ε

kTG
( 2l

1−p )2

≈ 1− p

4

√
πkTG

ε

〈
Eλ

G2

〉 ≈ 1
ZG2

∫
ε

(
2l

1− p

)2

e
¡ ε

kTG
( 2l

1−p )2

dl =
1
2
kTG
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Similar expressions can be calculated from ρρ
G2, Zρ

G2 and 〈Eρ
G2〉, where the gas is confined entirely

to the right of the partition.

6.2.4 Moving partition

We will now proceed with the gas located entirely on the left of the piston, and consider the mean

internal energy of the gas states, and the pressure upon the piston, as the piston moves.

For the piston located at a position Y we use the Hamiltonian Hλ
G2 given in Equation 5.11 for

the internal energy of the gas states. The energy and pressure of the individual gas states are

Eλ
l (Y ) =

4εl2

(Y + 1− p)2

∂El(Y )
∂Y

=
−8εl2

(Y + 1− p)3

The evaluation of the effect of the moving partition depends upon how the probabilities of each

state changes as the piston moves. We will consider three cases: perfectly isolated, essentially

isolated and isothermal. The definition of these follows that given in [Tol79, Chapter 12 B]4.

Perfect Isolation

For this condition, we assume the gas is completely isolated, and the expansion takes place suf-

ficiently slowly, that the probabilities are unchanged from their initial values, proportional to

e
¡ ε

kTG
( 2l

1−p )2

ρλ
G3(Y ) =

1
ZG3

∑

l

e
¡ ε

kTG
( 2l

1−p )2 ∣∣Ψλ
l (Y )

〉 〈
Ψλ

l (Y )
∣∣

ZG3 =
∑

l

e
¡ ε

kTG
( 2l

1−p )2

≈ 1− p

4

√
πkTG

ε

〈
Eλ

G3(Y )
〉

=
1

ZG3

∫
ε

(
2l

Y + 1− p

)2

e
¡ ε

kTG
( 2l

1−p )2

dl =
1
2
kTG

(
1− p

Y + 1− p

)2

Pλ
G3(Y ) =

1
ZG3

∫ −8εl2

(Y + 1− p)3
e

¡ ε
kTG

( 2l
1−p )2

dl = −kTG
(1− p)2

(Y + 1− p)3

The pressure term is derived from the change in internal energies of the gas, when the piston

position Y changes. Note, the piston position is an external co-ordinate for the gas. The work

performed upon the piston by the gas, when the piston is initially in the center of the box (Y = 0)

is

Wλ
G3(Y ) =

∫ Y

0

kTG
(1− p)2

(Y 0 + 1− p)3
dY 0 =

1
2
kTG

Y (Y + 2(1− p))
(Y + 1− p)2

As the system is completely isolated, the change in internal energy must exactly equals work

performed so that 〈EG3(Y )〉+ WG3(Y ) = 1
2kTG.

4It will be seen that essential isolation broadly corresponds to those processes that are traditionally referred to

as ’adiabatic’ in thermodynamics. We have not used this term to avoid confusion with the ’adiabatic theorem’ in

quantum mechanics, which will be applicable to all three of the above processes
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After the expansion has ended at Y = (1− p), the gas has internal energy 1
8kTG, and the work

extracted is 3
8kTG. If the system is allowed to continue in perfect isolation, the piston will now

reverse direction and start to compress the gas. This requires work to be performed by the piston

upon the gas

Wλ
G3(Y ) =

∫ Y

1¡p

kTG
(1− p)2

(Y 0 + 1− p)3
dY 0

Again the total energy is constant, and when the piston has reached the center, the gas has internal

energy 1
2kTG and the work performed upon the gas is 3

8kTG. As the work extracted during the

expansion is the same as that performed during the compression, the cycle is reversible.

If, when the piston was at Y = 1− p, instead of allowing the piston to immediately return to

the center, we brought the gas into contact with the heat bath, it would return to the state ρG0

above, absorbing 3
8kTG heat from the bath in the process. When the piston starts to compress

the gas from this state, different results occur, as the initial probabilities are now proportional to

e
¡ ε

kTG
( l

1−p )2

ρλ
G4(Y ) =

1
ZG4

∑

l

e
¡ ε

kTG
( l

1−p )2 ∣∣Ψλ
l (Y )

〉 〈
Ψλ

l (Y )
∣∣

ZG4 =
∑

l

e
¡ ε

kTG
( l

1−p )2

≈ 1− p

2

√
πkTG

ε

〈
Eλ

G4(Y )
〉

=
1

ZG4

∫
ε

(
2l

Y + 1− p

)2

e
¡ ε

kTG
( l

1−p )2

dl = 2kTG

(
1− p

Y + 1− p

)2

Pλ
G4(Y ) =

1
ZG4

∫ −8εl2

(Y + 1− p)3
e

¡ ε
kTG

( l
1−p )2

dl = −4kTG
(1− p)2

(Y + 1− p)3

Wλ
G4(Y ) =

∫ Y

1¡p

−PG4(Y 0)dY 0 = −2kTG

((
1− p

Y + 1− p

)2

− 1
4

)

Again,
〈
Eλ

G4(Y )
〉

+ Wλ
G4(Y ) = 1

2kTG, but after compression to Y = 0, the gas has internal energy

2kTG. The work performed upon the gas during the compression was 3
2kTG. If we now bring

the gas back into contact with heat bath, it will be restored to the original state ρλ
G2 with energy

1
2kTG, transferring the 3

2kTG to the heat bath. During the course of the complete cycle, a total

amount of work equal to 3
2kTG − 3

8kTG = 9
8kTG has been dissipated.

Essential Isolation

The perfect isolation assumed above is not achievable in practice. The interactions with the

surrounding environment will cause transitions between eigenstates. As the energy levels change,

the system moves out of Boltzmann equilibrium, but the interactions with the environment will

cause the system to return to Boltzmann equilibrium over a characteristic time τG5. An essentially

isolated system is one for which this contact with the environment takes place, but involves no net

transfer of energy.

This can be considered as dividing the changes into a series of infinitesimal changes in energy

dE =
∑

n pndEn +
∑

n Endpn. First, the system is in perfect isolation, so that dpn = 0, and
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eigenstates are allowed to change. The work performed upon the system is dE =
∑

n pndEn. The

next stage holds the eigenstates constant, but brings the system into contact with a heat bath,

for a time τG5. This will bring the system into a new Boltzmann equilibrium. The key element to

essential isolation is that, at each point that the system is brought into contact with a heat bath,

the temperature of the heat bath is chosen so that there is no net change in internal energy of the

system (
∑

n Endpn = 0) even though there is a change in occupation probabilities (dpn 6= 0).

A system which is essentially isolated is, therefore, always in equilibrium with some notional

heat bath at temperature T , but this temperature is variable, and depends upon the external

parameters. Changes in internal energy of the system can only come about through work extracted

from, or performed upon the system.

For the Popper-Szilard Engine, the temperature of the gas is now a function of the piston

position T = T (Y )

ρλ
G5(Y ) =

1
Zλ

G5(Y )

∑

l

e¡ ε
kT ( 2l

Y +1−p )2 ∣∣Ψλ
l (Y )

〉 〈
Ψλ

l (Y )
∣∣

Zλ
G5(Y ) =

∑

l

e¡ ε
kT ( 2l

Y +1−p )2

≈ Y + 1− p

4

√
πkT

ε

〈
Eλ

G5(Y )
〉

=
1

Zλ
G5(Y )

∫
ε

(
2l

Y + 1− p

)2

e¡ ε
kT ( 2l

Y +1−p )2

dl =
1
2
kT

Pλ
G5(Y ) =

1
Zλ

G5(Y )

∫ −8εl2

(Y + 1− p)3
e¡ ε

kT ( l
Y +1−p )2

dl =
−kT

Y + 1− p

We cannot immediately evaluate W =
∫

Pλ
G5(Y )dY as we do not know the variation of T with

Y . We can solve this by noting the essential isolation requires

P (Y )dY = dW = dE =
1
2
kdT

so
k

2
dT

dY
= P (Y ) =

−kT

Y + 1− p

which has the solution (given the initial temperature is TG)

T = TG

(
Y0 + 1− p

Y + 1− p

)2

For an expansion phase, Y0 = 0, while for a compression phase Y0 = 1−p. It can be readily verified

that this gives the same results as for perfect isolation above5.

Isothermal

The third method we use is to keep the system in constant contact with a heat bath at the initial

temperature TG. As the values of the energy eigenvalues En(Y ) changes depending upon the
5This equivalence between essential and perfect isolation occurs whenever the energy eigenstates have the form

En = α(V )nβ , where α(V ) depends upon the varying external parameters, but β is a constant. This applies only

to mean pressure. The effect of fluctuations will still be different.
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Expansion Compression

Isolated 3
8kTG − 3

2kTG

Isothermal kTG ln 2 −kTG ln 2

Table 6.1: Work extracted from gas

external parameters, the occupation probabilities continuously adjust to be proportional to e
¡ En

kTG .

As this means the infinitesimal change
∑

n Endpn 6= 0 heat will be drawn form or deposited in the

heat bath.

ρλ
G6(Y ) =

1
ZG6λ(Y )

∑

l

e
¡ ε

kTG
( 2l

Y +1−p )2 ∣∣Ψλ
l (Y )

〉 〈
Ψλ

l (Y )
∣∣ (6.6)

Zλ
G6(Y ) =

∑
n

e
¡ ε

kTG
( 2l

Y +1−p )2

≈ Y + 1− p

4

√
πkTG

ε

〈
Eλ

G6(Y )
〉

=
1

Zλ
G6(Y )

∫
ε

(
2l

Y + 1− p

)2

e
¡ ε

kTG
( 2l

Y +1−p )2

dl =
1
2
kTG

Pλ
G6(Y ) =

1
Zλ

G6(Y )

∫ −8εl2

(Y + 1− p)3
e

¡ ε
kTG

( 2l
Y +1−p )2

dl = − kTG

(Y + 1− p)

Unlike in the isolated cases, the internal energy remains constant, and the sum of internal energy

and work is not constant, as heat is drawn from, or deposited in the heat bath, to compensate for

work extracted or added by the moving piston. For expansion we have

W =
∫ Y

0

− kTG

Y 0 + 1− p
dY 0 = kTG ln

(
1− p

Y + 1− p

)

and compression gives

W =
∫ Y

1¡p

− kTG

Y 0 + 1− p
dY = kTG ln

(
2(1− p)

Y + 1− p

)

The work extracted from expansion is kTG ln 2 which equals the work required for compression.

The complete cycle therefore requires no net work to be dissipated into the heat bath.

If we summarise the results of the three types of expansion in Table 6.2.4, we can see that the

maximum energy extracted from the expansion phase is under isothermal expansion, while the

minimum energy required during compression is also for isothermal expansion. We will therefore

assume that the gas is in isothermal contact with a heat bath at temperature TG from now on.

Fluctuations

The mean values derived above are valid as an average over an ensemble. However, that is no

guarantee that the value for any individual case will be close to the average. The usual formula

for ’fluctuations’ about the mean is given by
〈
A2

〉− 〈A〉2
〈A〉2 ≈ 1

m
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where m is a large number of degrees of freedom in the system. However, in this situation there

is only one degree of freedom, and this suggests that fluctuations in the pressure, and hence work

done, may be very large.

Evaluation of the size of
〈
E2

〉
and

〈
P 2

〉
for perfect isolation gives

〈
E2

G3

〉
=

1
ZG3

∫
16ε2

(Y + 1− p)4
l4e

¡ ε
kTG

( 2l
1−p )2

dl =
3
4
(kTG)2

(
1− p

Y + 1− p

)4

= 3 〈EG3〉2
〈
P 2

G3

〉
=

1
ZG3

∫
64ε2

(Y + 1− p)6
l4e

¡ ε
kTG

( 2l
1−p )2

dl = 3(kTG)2
(

(1− p)2

(Y + 1− p)3

)2

= 3 〈PG3〉2

This gives substantial fractional deviations from the mean energy and pressure. In the case of

perfect isolation, the actual gas state will not change during the course of the expansion, and the

net energy transferred is ∆Wn =
∫

∂En

∂X dX = ∆En, which will imply that over the ensemble we

will have 〈
W 2

〉− 〈W 〉2
〈W 〉2 = 2

which corresponds to large fluctuations in the amount of energy drawn from, or deposited in the

work reservoir over each cycle.

Clearly the size of the fluctuation at any given time will be the same for the essentially isolated

expansion. For the isothermal expansion, we have

〈
E2

G6

〉
=

1
ZG6

∫
16ε2

(Y + 1− p)4
l4e

¡ ε
kTG

( 2l
Y +1−p )2

dl =
3
4
(kTG)2

= 3 〈EG6〉2
〈
P 2

G6

〉
=

1
ZG6

∫
64ε2

(Y + 1− p)6
l4e

¡ ε
kTG

( 2l
Y +1−p )2

dl = 3(kTG)2
1

(Y + 1− p)2

= 3 〈PG6〉2

so the fractional variation is still 2.

For the cases of essential isolation, or isothermal expansion, however, we are assuming that,

after each small expansion step, the system is allowed to interact with an environment, so that it is

restored to a Boltzmann equilibrium. This contact, over a characteristic thermal relaxation period

τθ effectively randomises the state of the system, in accord with the probabilities of the Boltzmann

distribution, from one expansion step to the next. If we suppose the expansion takes place over

a time t = nτθ there will be n such randomisations. From this it can be shown (see Appendix

F), that, although the fractional fluctuation in the energy transferred is of order 2 on each small

step, the fractional fluctuation in energy transferred over the course of an entire expansion or

compression phase is of order 1/n = τθ/t . For essentially isolated and isothermal expansions,

as the expansion takes place over a large time with respect to the thermal relaxation time, the

deviation from the mean work extracted from, or deposited within, the work reservoir is negligible.
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Conclusion

We have now examined the thermal state of the one atom gas, when it is confined to the left side

of the piston. The isothermal expansion of this gas, as the piston moves from the center, to the

right end of the box, extracts kTG ln 2 energy from the gas. Evidently, had we started with the

gas confined to the right side of the piston, we would have equally well extracted kTG ln 2 work.

Now, if we start with the gas occupying the entire box, and insert the partition in the center,

we would have the state

ρG1 =
1
2

(
ρλ

G2 + ρρ
G2

)

Inserting the piston into the center, |Φ0〉 〈Φ0 |, and applying the expansion operators UW4 leads

to the state

1
2

(
ρλ

G6(1− p) |Φ(1− p)〉 〈Φ(1− p) |+ ρρ
G6(−1 + p) |Φ(−1 + p)〉 〈Φ(−1 + p) |)

In both cases the energy kTG ln 2 is extracted from the gas. This confirms that the Szilard Paradox

is still valid for quantum systems, and the question of superposition of the wavefunction, raised by

Zurek, is irrelevant.

6.3 Thermal State of Weights

We now wish to describe the thermal states of the weights as they are raised and lowered by

the pulleys, and when a shelf is inserted into an unraised weight at height h. The probability

of finding an unraised weight above the shelf height h is also the probability of an imperfect

correlation between the location of the weights and the piston states. This governs the tendency

of the Popper-Szilard Engine to switch between raising and lowering cycles, and plays a critical

role in the long term behaviour of the Engine.

We will bring the weights into contact with a heat bath at temperature TW . It will be shown

that, due to properties of the quantum states, described by Airy functions, that there is no differ-

ence between perfect isolation, essential isolation or isothermal expansion, when raising or lowering

a weight. We will assume, for simplicity, that the weight is always in contact with the heat bath.

The initial density matrix, with the weights resting upon the floor, is given by

ρW0 =
1

ZW0

∑
n

e
anMwgH

kTW |An(0)〉 〈An(0) | (6.7)

ZW0 =
∑

n

e
anMwgH

kTW

(recall an < 0)

6.3.1 Raising and Lowering Weight

We will consider the case of raising a weight, and then show that the resulting density matrix

describes a lowered weight as well. If we start with the system in perfect isolation and the floor
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beneath the weight is raised slowly from 0 to a height h(Y ) then, by the adiabatic theorem, the

new density matrix will be6

ρ0
W1(h) =

1
ZW0

∑
n

e
anMwgH

kTW |An(Y )〉 〈An(Y ) |

while the equilibrium density matrix, that results from bringing ρ0
W1(h) into contact with the heat

bath, will be

ρW1(h) =
1

ZW1

∑
n

e
(Han−h)Mwg

kTW |An(Y )〉 〈An(Y ) | (6.8)

ZW1(h) =
∑

n

e
(Han−h)Mwg

kTW

Comparing these, it can be seen that the probability of a given state |An(Y )〉 is the same in both

cases

pn(h) =
e

(Han−h)Mwg
kTW

∑
n e

(Han−h)Mwg
kTW

=
e
−hMwg

kTW e
anMwgH

kTW

e
−hMwg

kTW

∑
n e

anMwgH
kTW

= p0
n(h)

In other words, as

ρ0
W1(h) = ρW1(h)

the density matrix resulting from perfect isolation is already in equilibrium at TW . By definition

this will also apply to essential isolation. As this holds for any height h, the three processes are

identical. It also follows that the density matrix that arises from starting with a raising floor, and

then lowering it to a height h will be the same.

One implication of this equivalence is that net exchange of heat between the weight and the

heat bath while it is being raised or lowered isothermally will be zero. Any change in the internal

energy of the weight comes about through the work done upon the weight. To examine this, we

will now look at the generalised pressure exerted upon the co-ordinate h(Y ).

The energy and pressure of the state |An(Y )〉 is given by

En = (h− anH)MW g

∂En

∂h
= MW g

The pressure Pn(h) = ∂En

∂h is independant of both n and h. This means we can evaluate the

average pressure for any ensemble as it is clearly simply 〈P (h)〉 = MW g. It should also be clear

that
〈
P (h)2

〉
= 〈P (h)〉2 so there is zero fluctuation in the pressure! From this it will also follow

there is zero fluctuation in the work required to raise the weight. This constancy of the pressure

gives the very pleasing result that if the weight is raised slowly through a height of h the work

performed upon the weight is always exactly MW gh. This makes a raised weight a particularly

useful system to use as a work reservoir.
6We have continued to use the notation developed in Chapter 5 where the quantum wavefunction An(z, h(Y ))

is represented by the Dirac ket |An(Y )〉.
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As we know that no net flow of heat has entered or left the system we can immediately state

that the internal energy of the weight must be of the form

〈E(h, TW )〉 = MW gh + f(TW )

We now use the asymptotic approximation

an ≈ −
(

3πn

2

) 2
3

valid for large n, to complete this equation.

ZW1(h) =
∑

n

e
Mwg(Han−h)

kTW ≈ e
¡ MW gh

kTW

∫ 1

0

e
¡( 3πn

2 )
2
3 MW gH

kTW dn

≈ e
¡ hMW g

kTW

2
√

π

(
kTW

MW gH

) 3
2

〈E(h, TW )〉 =
1

ZW1(h)

∑
n

Mwg(h−Han)e
(Han−h)Mwg

kTW

= MW gh− MW gH

ZW1
e

¡ MW gH

kTW

∑
n

ane
MwgHan

kTW

≈ MW gh + 2
√

πMW gH

(
MwgH

kTW

) 3
2

∫ 1

0

(
3πn

2

) 2
3

e
¡( 3πn

2 )
2
3 MW gH

kTW dn

≈ MW gh +
3
2
kTW

Further analysis of the energy fluctuations gives

〈
E2

〉
= (MW gh)2 +

15
4

(kTW )2 + 3MW ghkTW

〈
E2

〉− 〈E〉2 =
3
2
(kTW )2

although, as noted above, there is no fluctuation in the pressure.

With regard to the internal energy term 3
2kTW , we can break the Hamiltonian HW into two

terms

HKE = − h̄

2MW

∂2

∂z2

HPE = MW gz

representing kinetic and potential energies, and find they have expectation values

〈HKE〉 =
1
2
kTW

〈HPE〉 = kTW

The internal energy dividing in this ratio between kinetic and potential energy is an example of

the virial theorem.
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6.3.2 Inserting Shelf

We now consider the effect of inserting a shelf at height h into an unraised thermal state ρW0. This

projects out raised and unraised portions of the wavefunction. The statistical weight of these two

portions gives the probability of locating the unraised weight above or below the shelf height, and

so determines the reliability of the resetting mechanism at the end of a cycle of the Popper-Szilard

Engine.

For simplicity we will deal only with the projection of ρW0 into raised and unraised density

matrices. Although there will, in general, be interference terms between the two subspaces when

the shelf is inserted using US , in the situations we will be considering the contact with the TW

heat bath will destroy these coherence terms.

The projections of the unraised density matrix to below and above the height h, respectively,

are given by:

ρW0(0)0 = P (UN)ρW0P (UN)

=
1

ZW0

∑
m

e
am

MW gH

kTW β2
m(h) |UNm(h)〉 〈UNm(h) |

ρW0(h)0 = P (RA)ρW0P (RA)

=
1

ZW0

∑
m

e
am

MW gH

kTW α2
m(h) |RAm(h)〉 〈RAm(h) |

These have not been normalised. We must be careful when doing this, as the |RAm(h)〉 and

|UNm(h)〉 do not form an orthonormal basis.

Tr [ρW0(0)0] =
∑

n

〈An(Y ) |
{

1
ZW0

∑
m

e
am

MW gH

kTW β2
m(h) |UNm(h)〉 〈UNm(h) |

}
|An(Y )〉

=
1

ZW0

∑
m

e
am

MW gH

kTW β2
m(h)

∑
n

β2
n(h) 〈UNn(h) |UNm(h)〉 〈UNm(h) |UNn(h)〉

=
1

ZW0

∑
m

e
am

MW gH

kTW β2
m(h)

In the last step we have used the fact that
∑

n β2
n(h) |UNn(h)〉 〈UNn(h) | is the identity operator

for the unraised subspace to substitute7

〈UNm(h) |
{∑

n

β2
n(h) |UNn(h)〉 〈UNn(h) |

}
|UNm(h)〉 = 〈UNm(h) |UNm(h)〉 = 1

We may similarly obtain the result

Tr [ρW0(h)0] =
1

ZW0

∑
m

e
am

MW gH

kTW α2
m(h)

Using the asymptotic approximations for am we get the high temperature values

ZW0 =
∑
m

e
am

MW gH

kTW ≈
∫ 1

0

e
¡( 3πn

2 )
2
3 MwgH

kTW

7This can be generalised to the produce useful result Tr
[∑

n
cn |UNn(h)〉 〈UNn(h) |

]
=

∑
n

cn despite the

non-orthogonality of the |UNn(h)〉
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=
∑

m e
MW gH

kTW
amEmα2

m(h) 〈RAm(h) |RAm(h)〉
∑

m e
MW gH

kTW
amα2

m(h) 〈RAm(h) |RAm(h)〉

≈ 1
P1(h, TW )ZW0

∫ 1

2
3π ( h

H )3/2
e

MW gH

kTW
am(−amMW gH)

(
1−

(
2

3πm

) 2
3 h

H

) 1
2

dm

≈ 3
2
kTW + MW gh

using the asymptotic value of am. This is the same energy as for the equilibrium density matrix

ρW1(h).

We can likewise calculate for the weight trapped below the shelf:

EW (z < h) =
1

(1− P1(h, TW ))ZW0

∑
m

e
MW gH

kTW
amEnβ2

m(h)

≈ 3
2
kTW −MW gh


 e

¡ MW gh

kTW

1− e
¡ MW gh

kTW




If we now calculate the mean height of the weight, conditional upon it being above the shelf

〈z > h〉 =

∫ 1
h
〈z | z ρW0 |z〉 dz∫ 1

h
〈z | ρW0 |z〉 dz

≈ kTW

MW g
+ h

giving a mean potential energy

PEW (z > h) ≈ kTW + MW gh

= EW (z > h)− 1
2
kTW

and for below the shelf

〈z < h〉 =

∫ h

0
〈z | z ρW0 |z〉 dz

∫ h

0
〈z | ρW0 |z〉 dz

≈ kTW

MW g
− h


 e

¡ MW gh

kTW

1− e
¡ MW gh

kTW




PEW (z < h) ≈ kTW −MW gh


 e

¡ MW gh

kTW

1− e
¡ MW gh

kTW




= EW (z < h)− 1
2
kTW

so the mean kinetic energy is still 1
2kTW . This is an important result, as it demonstrates that the

mean kinetic energy of a particle, in thermal equilibrium in a gravitational field, is the same at

any height.

It will be useful to note that

〈E(TW )〉 = P1(h, TW )EW (z > h) + P2(h, TW )EW (z < h)

〈PE(TW )〉 = P1(h, TW )PEW (z > h) + P2(h, TW )PEW (z < h)
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If the height of the shelf is large
(
h À kTW

MW g

)
then the mean energy of the weight below the

shelf approaches 3
2kTW - the same energy as without the shelf. This corresponds to the case where

there is little probability of the weight being above the shelf, so inserting it has no effect. If the

shelf is low
(
h ¿ kTW

MW g

)
then the mean height below the shelf is simply 1

2h . In this case the

mean kinetic energy of the particle is much higher than the gravitational potential below the shelf

and the probability distribution of the height is almost flat. The mean energy becomes negligibly

different from the mean kinetic energy 1
2kTW . These are consistent with the approximations for

the perturbed Airy function eigenvalues derived in Appendix E.

When the potential barrier is raised in the center of the one-atom gas, it was possible to show

how the wavefunction deforms continuously, and so we could demonstrate in Section 6.2 that, for

kTG much higher than the ground state energy, negligible work is done by raising the potential. We

would like to show a similar result for the Airy functions, as the shelf is inserted. Unfortunately,

there is no simple solution for the intermediate stages, or even for the weight confined between the

floor and the shelf. However, in Appendix E it is argued that, for high quantum numbers (m À 1)

it is reasonable to assume that there is negligible perturbation of the energy eigenvalues as the

shelf is inserted. For situations where the weight’s internal energy kTW is large in comparison to

the ground state energy of the weight, −a1MW gH, then the work done inserting the shelves can

be disregarded.

6.4 Gearing Ratio of Piston to Pulley

We now need to calculate the height hT at which the shelves are inserted, to complete the cal-

culation of the probability that an unraised weight is trapped above the shelf. In Section 5.4 it

was noted that the height h through which the weight is raised is not necessarily proportional to

the position of the piston Y . Some frictionless gearing system is required to provide a gearing

ratio h(Y ). In this Section we calculate the optimal gearing ratio, and use this to calculate the

maximum height hT through which the weight can be raised by the expansion of the gas. This

will be the height at which the shelves must be inserted into the Popper-Szilard Engine.

We wish the mean energy given up by the expansion of the gas to exactly match the energy

gained by the raising of the weight, or

∫ h(1¡p)

0

PW (h)dh = −
∫ 1¡p

0

PG(Y )dY

∫ 1¡p

0

PW (h(Y ))
∂h

∂Y
dY = −

∫ 1¡p

0

PG(Y )dY

∂h

∂Y
= − PG(Y )

PW (h(Y ))

For essential isolation of the gas, this would give

∂h0(Y )
∂Y

=
kTG(1− p)2

MW g(Y + 1− p)3
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h0(Y ) =
kTG

2MW g

(
1−

(
1− p

Y + 1− p

)2
)

giving a maximum h0(1− p) = 3kTG

8MW g

However, we can extract more energy from the gas per cycle if we use an isothermal expansion,

which requires a different gearing ratio

∂h(Y )
∂Y

=
kTG

MW g(Y + 1− p)

h(Y ) =
kTG

MW g
ln

(
1 +

Y

1− p

)

giving hT = h(1− p) = kTG

MW g ln 2.

This is the optimum gearing, based upon the mean energy transfer. On average, the work

extracted from the gas is equal to the work done upon the weight, and vice versa. As noted in

Sections 6.2 and 6.3 above, there are fluctuations in the pressure exerted upon the piston by the

gas, but none in the pressure exerted by the weight upon the floor. However, as demonstrated in

Appendix F, the fluctuation about the mean energy extracted from the gas becomes negligible,

so we have now justified our statement in Section 5.4 that the amount of energy drawn from or

deposited in the external work reservoir is negligible.

6.4.1 Location of Unraised Weight

We now know the height at which the shelves are inserted, so we can calculate the probability of

locating the weight above or below the shelf, as a function only of the temperatures of the gas and

the weight.

Substituting hT = kTG

MW g ln 2 into Equations 6.9 and 6.10 we obtain:

Above Shelf at hT

P1 =
(

1
2

) TG
TW

(6.12)

Below Shelf at hT

P2 = 1−
(

1
2

) TG
TW

(6.13)

The form of these results will be shown to play a critical role in the failure of the Popper-Szilard

Engine to produce anti-entropic behaviour. We will be examining the origin of this relationship in

detail in Chapter 8.

6.5 The Raising Cycle

We can now use the unitary operators in Equation 5.27 to describe the complete operation of the

engine. In this section we will move through each step of the ’raising cycle’ given in Section 5.6.
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We will confirm that the fully quantum mechanical description of the Popper-Szilard Engine does

not lead to the conclusions of [Zur84, BS95], that the piston does not move as the one atom gas

is in a superposition. With regard to the arguments of [LR90], we will show that the operation

URES is capable of achieving a partial resetting of the engine, without the requirement for external

work. However, as noted in Section 5.5, there are inevitable errors in the resetting operation. We

will now be able to evaluate the effect of these errors upon the state of the Engine at the end of

the cycle.

Extracting Energy from the TG Heath Bath

For the ’raising cycle’ (Figure 4.5) the initial density matrix is given by

ρT0 = ρG0 ⊗ ρλ
W0 ⊗ ρρ

W0 ⊗ |φ0〉 〈φ0 |

The internal energy of this state is

ET0 =
1
2
kTG + 3kTW

During Stage (a), the operator URI is applied. As the piston is initially in state |φ0〉 this

corresponds to the raising of a potential barrier in the center of the gas and the insertion of the

piston. The state of the system is now

ρT1(0) = ρG1 ⊗ ρλ
W0 ⊗ ρρ

W0 ⊗ |Φ(0)〉 〈Φ(0) |
=

1
2

(
ρλ

G6(0) + ρρ
G6(0)

)⊗ ρλ
W0 ⊗ ρρ

W0 ⊗ |Φ(0)〉 〈Φ(0) |

and the internal energy is unchanged. As the expansion and lifting (operator UW4) takes place in

Stage (b) this evolves through the Y states

ρT1(Y ) =
1
2

(
ρλ

G6(Y )⊗ ρλ
W1(h(Y ))⊗ ρρ

W0 ⊗ |Φ(Y )〉 〈Φ(Y ) |
+ρρ

G6(−Y )⊗ ρλ
W0 ⊗ ρρ

W1(h(Y ))⊗ |Φ(−Y )〉 〈Φ(−Y ) |) (6.14)

until the piston wavepackets reach the sides of the box at Y = 1− p. It is important to note how

the parameter Y has been applied in this equation. For those states where the gas is to the left of

the piston, the value Y represents the distance the piston has moved to the right, from the center

of the box. This varies from 0 to 1− p as the piston moves to the righthand side of the box.

However, for the states where the gas is to the right of the piston, the piston moves to the left.

This would be represented by a negative value of Y . To simplify the expression of this, we have

substituted −Y . The value of Y goes from 0 to 1− p again, but now represents the piston moving

from position 0 to the lefthand side of the box, at position −1 + p.

When Y = 1− p, the state of the system is

ρT1(1− p) =
1
2

(
ρλ

G6(1− p)⊗ ρλ
W1(hT )⊗ ρρ

W0 ⊗ |Φ(1− p)〉 〈Φ(1− p) |
+ρρ

G6(−1 + p)⊗ ρλ
W0 ⊗ ρρ

W1(hT )⊗ |Φ(−1 + p)〉 〈Φ(−1 + p) |)
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The internal energy is now

ET1(1− p) =
1
2
kTG + 3kTW + MW ghT

This refutes the arguments of [Zur84, BS95], that the piston cannot move because the quantum

gas exerts an even pressure upon it until an external measurement is performed. Clearly the piston

is not left in the center of the box. The gas expands, exerting pressure upon the piston, and lifts

one of the weights. This extracts energy from the gas, but the isothermal contact with the TG heat

bath replaces this. At the end of the expansion, one of the weights has been raised through the

distance hT . The energy has increased by MW ghT = kTG ln 2, which has been drawn from the TG

heat bath during the isothermal expansion. At this point we appear to have proved the contention

of Popper et al. that an ’information gathering measurement’ is not necessary to extract energy

from the Szilard Engine.

The MW ghT energy is stored in the internal energy of the raised weight. If we remove the

support for the weight it will start to fall to the floor. Contact with the TW heat bath will then

return it to the thermal equilibrium state ρW0. This will have reduced it’s energy by MW ghT .

The extra energy is dissipated into the TW heat bath. As we argued in Section 4.2.3, we have

encountered no reason, so far, that prevents us from setting TW > TG. If we can reliably transfer

MW ghT energy per cycle from the TG to the TW heat baths, we will then have violated the second

law of thermodynamics. However, we still have to address the problem of resetting the Engine for

the next cycle. Before we can allow the weight to fall to the floor and dissipate the MW ghT energy

into the TW heat bath we must correlate it’s position to the location of the piston. As we found in

Section 5.5, without this correlation in the resetting stage we will be unable to start a new cycle,

or if we attempted to start a new cycle, the Engine would automatically reverse into a lowering

cycle.

Resetting the Piston Position

At this point, Stage (c), the shelves are inserted at a height hT , by the operator US and then,

Stage (d), the piston is removed from the box by UIR.

The effect of US is to divide each of the unraised weight wavefunctions |An(0)〉 into raised

(|RAn(hT )〉) and unraised (|UNn(hT )〉) portions. We will assume that contact with the TW heat

bath destroys interference terms between the raised and unraised wavefunctions8. In terms of the

projected density matrices in Equation 6.11, the system is now:

ρT2 =
1
2

(
ρλ

G6(1− p)⊗ ρλ
W1(hT )⊗ {P1ρ

ρ
W0(hT )00 + P2ρ

ρ
W0(0)00} ⊗ |Φ(1− p)〉 〈Φ(1− p) |

+ρρ
G6(−1 + p)⊗ {

P1ρ
λ
W0(hT )00 + P2ρ

λ
W0(0)00}⊗ ρρ

W1(hT )⊗ |Φ(−1 + p)〉 〈Φ(−1 + p) |)

8Strictly, we can only be certain this will have happened when the system is allowed to thermalise, after the

operation URES . However, it makes no difference to the calculation, while simplifying the description, if we also

assume this happens after the shelves are inserted.
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The operation of URI upon ρT2, during Stage (d), removes the piston states, and allows the gas

state to return to ρG0:

ρT3 =
1
2
ρG0 ⊗

(
ρλ

W1(hT )⊗ {P1ρ
ρ
W0(hT )00 + P2ρ

ρ
W0(0)00} ⊗ |φR〉 〈φR |

+
{
P1ρ

λ
W0(hT )00 + P2ρ

λ
W0(0)00}⊗ ρρ

W1(hT )⊗ |φL〉 〈φL |
)

The density matrices ρW0(hT )00 show the possibility that the unraised weights have been trapped

above the shelf height hT . This is a ’thermal fluctuation’ in the internal energy of the weights. It

was shown in Section 6.3 that the internal energy of the ρW0(hT )00 states is MW ghT higher than

the equilibrium state ρW0. The source of this energy is the TW heat bath. Trapping the unraised

weight does not constitute energy drawn from the TG heat bath, in contrast to the increase in

internal energy of the raised weight ρW1(hT ).

If we calculate the mean internal energy of ρT3, we find it is unchanged:

ET3 =
1
2
kTG +

1
2
P2


3kTW + MW ghT


1− e

¡ MW ghT
kTW

1− e
¡ MW ghT

kTW







+
1
2
P2


3kTW + MW ghT


1− e

¡ MW ghT
kTW

1− e
¡ MW ghT

kTW







+
1
2
P1(3kTW + 2MW ghT ) +

1
2
P1(3kTW + 2MW ghT )

=
1
2
kTG + 3kTW + MW ghT

(
P2

(
1− P1

P2

)
+ 2P1

)

= ET1(1− p)

Re-writing ρT3 in a form more suitable for applying URES in Stage (e) we get

ρT3 = ρG0⊗
(

1
2
P2ρ

λ
W1(hT )⊗ ρρ

W0(0)00 ⊗ |φR〉 〈φR |+ 1
2
P2ρ

λ
W1(0)00 ⊗ ρρ

W0(hT )⊗ |φL〉 〈φL |

+
1
2
P1ρ

λ
W1(hT )⊗ ρρ

W0(hT )00 ⊗ |φR〉 〈φR |+ 1
2
P1ρ

λ
W1(hT )00 ⊗ ρρ

W0(hT )⊗ |φL〉 〈φL |
)

The first line of this represents the unraised weight trapped below the shelf height. When this

happens, the location of the weight is correlated to the location of the piston, and can be used to

reset the piston. The second line corresponds to situations where the unraised weight has been

trapped above the shelf height. It not possible to identify the location of the piston from the

location of the weights in this portion of the density matrix.

Now applying URES to ρT3 we are left with the state

ρT4 = ρG0⊗
(

1
2
P2ρ

λ
W1(hT )⊗ ρρ

W0(0)00 ⊗ |φ0〉 〈φ0 |+ 1
2
P2ρ

λ
W1(0)00 ⊗ ρρ

W0(hT )⊗ |φ0〉 〈φ0 |

+
1
2
P1ρ

λ
W1(hT )⊗ ρρ

W0(hT )00 ⊗ |φ3〉 〈φ3 |+ 1
2
P1ρ

λ
W1(hT )00 ⊗ ρρ

W0(hT )⊗ |φ2〉 〈φ2 |
)

Where the unraised weight is found below the shelf, in the first line, the piston has been restored

to the center. However, it is left in states |φ2〉 and |φ3〉 on the second line. These are in general

superpositions of the piston states |φL〉, |φR〉 and |φ0〉. As both weights are above the shelf, the

piston may be located anywhere. However, as the probabilities of the locations of the weights have

not changed, the internal energy of the system is the same as ET3.
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Return to Equilibrium

We now remove the shelves, in Stage (f), by the operation of Uy
S , and allow the weights to come

to a thermal equilibrium at temperature TW . The equilibrium states of the weights depends upon

the location of the piston and pulley system. The piston states |φL〉 and |φR〉 will each support

one of the weights at a height hT , while state |φ0〉 allows both weights to fall to the floor. This

corresponds to an conditional internal Hamiltonian for the weights of

HW3 = Hλ
W (0)Hρ

W (0) |φ0〉 〈φ0 |
+Hλ

W (hT )Hρ
W (0) |φR〉 〈φR |+ Hλ

W (0)Hρ
W (hT ) |φL〉 〈φL |

As shown in Section 6.1, thermalisation of a system with conditional Hamiltonian leads to a

canonical distribution within each of the projected subspaces |φL〉, |φR〉 and |φ0〉. The probability

of each subspace is given by the trace of the projection onto the subspaces in the original density

matrix:

|φL〉 〈φL | ρT3 |φL〉 〈φL | = ρG0 ⊗
(

1
2
P1 |b3|2 ρλ

W1(hT )⊗ ρρ
W0(hT )00

+
1
2
P1 |b2|2 ρλ

W1(hT )00 ⊗ ρρ
W0(hT )

)
⊗ |φL〉 〈φL |

Tr [|φL〉 〈φL | ρT3 |φL〉 〈φL |] =
1
2
P1(|b2|2 + |b3|2)

|φR〉 〈φR | ρT3 |φR〉 〈φR | = ρG0 ⊗
(

1
2
P1 |c3|2 ρλ

W1(hT )⊗ ρρ
W0(hT )00

+
1
2
P1 |c2|2 ρλ

W1(hT )00 ⊗ ρρ
W0(hT )

)
⊗ |φR〉 〈φR |

Tr [|φR〉 〈φR | ρT3 |φR〉 〈φR |] =
1
2
P1(|c2|2 + |c3|2)

|φ0〉 〈φ0 | ρT3 |φ0〉 〈φ0 | = ρG0 ⊗
(

1
2
P2ρ

λ
W1(hT )⊗ ρρ

W0(0)00 +
1
2
P2ρ

λ
W1(0)00 ⊗ ρρ

W0(hT )

+
1
2
P1 |a3|2 ρλ

W1(hT )⊗ ρρ
W0(hT )00

+
1
2
P1 |a2|2 ρλ

W1(hT )00 ⊗ ρρ
W0(hT )

)
⊗ |φ0〉 〈φ0 |

Tr [|φ0〉 〈φ0 | ρT3 |φ0〉 〈φ0 |] = P2 +
1
2
P1(|a2|2 + |a3|2)

The weights now come into equilibrium on with the heat bath at temperature TW , with the final

state of the weights conditional upon the projected state of the piston. The canonical distributions

of the weights are:

|φ0〉 〈φ0 | → ρλ
W1(0)⊗ ρρ

W1(0)

|φR〉 〈φR | → ρλ
W1(hT )⊗ ρρ

W1(0)

|φL〉 〈φL | → ρλ
W1(0)⊗ ρρ

W1(hT )

When the piston is in the center, the equilibrium consists of the two weights in a thermal state

on the floor. If the piston is in the righthand position, the equilibrium thermal state has a raised

lefthand weight, with the righthand weight on the floor, and vice versa.
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Conclusion

We have now completed the ’Raising Cycle’ of the Popper-Szilard Engine. The final state of the

density matrix of the system is:

ρT5 = ρG0 ⊗
(
w1ρ

λ
W1(0)⊗ ρρ

W1(0)⊗ |φ0〉 〈φ0 |+ w2ρ
λ
W1(hT )⊗ ρρ

W1(0)⊗ |φR〉 〈φR |
+w3ρ

λ
W1(0)⊗ ρρ

W1(hT )⊗ |φL〉 〈φL |
)

(6.15)

where the statistical weights w1, w2 and w3 are calculated from the projection onto the sub-

spaces of |φ0〉 〈φ0 |, |φR〉 〈φR | and |φL〉 〈φL | above.

w1 = P2 +
1
2
P1

(
|a2|2 + |a3|2

)

= 1− 1
2
P1

(
1 + |a1|2

)

w2 =
1
2
P1

(
|b2|2 + |b3|2

)

=
1
2
P1

(
1− |b1|2

)

w3 =
1
2
P1

(
|c2|2 + |c3|2

)

=
1
2
P1

(
1− |c1|2

)
(6.16)

and we have made use of the identities, from the unitarity of URES , in Equation 5.26.

The internal energy of ρT5 is

ET5 =
1
2
kTG + 3kTW + (w2 + w3)MW ghT

= ET1(1− p)− w1MW ghT

In w1 proportion of cycles, the piston is restored to the center of the Engine. In these cases, the

raised weight has been allowed to fall back to the floor. This dissipates MW ghT energy into the

TW heat bath. The system is then ready to perform another raising cycle of the Popper-Szilard

Engine.

However, with probability (w2 + w3), the piston will not be restored to the center. On these

cycles, the energy extracted from the TG heat bath has been transferred to the weights, but it has

not been dissipated into the TW heat bath9. Instead, one of the weights has been trapped by the

imperfect resetting of the piston leaving it on the left or right of the Engine. The system will not

be able to continue with a raising cycle, but will instead ’reverse direction’ and use the trapped

energy to start upon a lowering cycle.
9Strictly speaking, it is possible that the cycle has ended with the unraised weight trapped in a thermal fluctu-

ation, while the raised weight is allowed to fall dissipatively. The result of this, however, is still no net transfer of

energy to the TW heat bath.
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6.6 The Lowering Cycle

We will now repeat the analysis of Section 6.5, but this time we will consider the ’lowering cycle’

described in Section 5.6. In this cycle, we start with the piston to one or the other side of the

Engine, and with the corresponding weight trapped at the height hT . We will then apply the

stages of the operator UT , exactly as we did for the raising cycle. This will be shown to take us

through the steps in Figure 5.7.

Pumping Energy into the TG Heath Bath

We start with the initial density matrix corresponding to the piston located on the right of the

Engine:

ρT6 = ρG0 ⊗ ρλ
W1(hT )⊗ ρρ

W0 ⊗ |φR〉 〈φR |

This has internal energy

ET6 =
1
2
kTG + 3kTW + MW ghT

Stage (a) consists of the operation URI , which in this case simply corresponds to inserting the

piston in the right end of the box, at Y = (1−p). The gas will be entirely to the left of the piston,

and will be subject to a negligible compression. The state is now

ρT7(1− p) = ρλ
G6(1− p)⊗ ρλ

W1(hT )⊗ ρρ
W0 ⊗ |Φ(1− p)〉 〈Φ(1− p) |

We now go through Stage (b), which involves the operation UW4. This causes the gas to compress,

while the lefthand weight is lowered. As the position of the piston moves from Y = 1−p to Y = 0,

the system moves through

ρT7(Y ) = ρλ
G6(Y )⊗ ρλ

W1(h(Y ))⊗ ρρ
W0 ⊗ |Φ(Y )〉 〈Φ(Y ) |

until it reaches

ρT7(0) = ρλ
G6(0)⊗ ρλ

W0 ⊗ ρρ
W0 ⊗ |Φ(0)〉 〈Φ(0) |

at the end of Stage (b). This state has internal energy

ET7(0) =
1
2
kTG + 3kTW

The compression of the gas is isothermal, so the internal energy of the gas remains constant

throughout this stage at 1
2kTG. The work performed upon the gas is passed into the TG heat bath.

The system has transferred MW ghT = kTG ln 2 energy from the raised weight to the heat bath.

Resetting the Piston Position

Operation US , during Stage (c), inserts shelves at height hT into the space of the weights. As both

of these weights are in the unraised position, both of the weights will be projected out:

ρT8 = ρλ
G6(0)⊗ {

P1ρ
λ
W0(hT )00 + P2ρ

λ
W0(0)00}

⊗{P1ρ
ρ
W0(hT )00 + P2ρ

ρ
W0(0)00} ⊗ |Φ(0)〉 〈Φ(0) |
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(again, for convenience we have assumed that thermal contact with the TW heat bath destroys

coherence between the raised and unraised density matrices). The mean energy is unaffected by

this.

Stage (d) now removes the piston from the center of the box. Unlike the raising cycle, this

has a significant effect upon the internal state of the one atom gas. In ρT8 the gas is confined

entirely to the left half of the box. When the piston is removed, the internal Hamiltonian for the

gas becomes HG0. With the full extent of the box accessible, the contact with the TG heat bath

allows the gas to expand to the equilibrium state ρG0, leaving the system in the state

ρT9 = ρG0 ⊗
(
(P1)2ρλ

W0(hT )00 ⊗ ρρ
W0(hT )00 + P1P2ρ

λ
W0(0)00 ⊗ ρρ

W0(hT )00

+P1P2ρ
λ
W0(hT )00 ⊗ ρρ

W0(0)00 + (P2)2ρλ
W0(0)00 ⊗ ρρ

W0(0)00)⊗ |φ0〉 〈φ0 |

However, the internal energy of the gas is still 1
2kTG so the energy of the system has not been

affected by the free expansion of the one atom gas.

We can see all four of the possible configurations of the weights are present. The resetting of

the piston, URES , in Stage(e) leads to the piston being in any of the possible locations, including

the superposition |φ1〉

ρT10 = ρG0 ⊗
(
(P1)2ρλ

W0(hT )00 ⊗ ρρ
W0(hT )00 ⊗ |φ1〉 〈φ1 |

+P1P2ρ
λ
W0(0)00 ⊗ ρρ

W0(hT )00 ⊗ |φL〉 〈φL |
+P1P2ρ

λ
W0(hT )00 ⊗ ρρ

W0(0)00 ⊗ |φR〉 〈φR |
+(P2)2ρλ

W0(0)00 ⊗ ρρ
W0(0)00 ⊗ |φ0〉 〈φ0 |

)

The second and third lines represent the situation where one weight was trapped above the shelf,

and one below. In this situation, the piston is moved to the corresponding side of the engine, to

hold up the trapped weight. This allows the machine to continue with a lowering cycle.

The fourth line gives the situation where both weights are trapped below the shelf height. As

neither weight is in a raised position, the piston cannot be moved without changing the location

of a weight. URES therefore leaves the piston in the central position. This means that at the start

of the next cycle, the piston will be in the central position, and a raising cycle will begin.

When both weights are trapped above the shelf height hT , the effect of URES is to put the

piston into the superposition of states given by |φ1〉. This superposition is constrained by the

unitarity requirements on URES given in Equation 5.26.

Return to Equilibrium

As with the raising cycle, the shelves are removed by Uy
S operation in Stage (f), and the weights

come to a thermal equilibrium with the TW heat bath.

The internal Hamiltonian for the weights is HW3 as in the raising cycle above. The process

of thermalisation is therefore exactly the same as for the raising cycle, requiring us to project out

each of the subspaces of the piston:
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|φL〉 〈φL | ρT10 |φL〉 〈φL | = ρG0 ⊗
(
(P1)2 |b1|2 ρλ

W0(hT )00 ⊗ ρρ
W0(hT )00

+P1P2ρ
λ
W0(0)00 ⊗ ρρ

W0(hT )00)⊗ |φL〉 〈φL |
Tr [|φL〉 〈φL | ρT10 |φL〉 〈φL |] = (P1)2 |b1|2 + P1P2

|φR〉 〈φR | ρT10 |φR〉 〈φR | = ρG0 ⊗
(
(P1)2 |c1|2 ρλ

W0(hT )00 ⊗ ρρ
W0(hT )00

+P1P2ρ
λ
W0(hT )00 ⊗ ρρ

W0(0)00)⊗ |φR〉 〈φR |
Tr [|φR〉 〈φR | ρT10 |φR〉 〈φR |] = (P1)2 |c1|2 + P1P2

|φ0〉 〈φ0 | ρT10 |φ0〉 〈φ0 | = ρG0 ⊗
(
(P1)2 |a1|2 ρλ

W0(hT )00 ⊗ ρρ
W0(hT )00

+(P2)2ρλ
W0(0)00 ⊗ ρρ

W0(0)00)⊗ |φ0〉 〈φ0 |
Tr [|φ0〉 〈φ0 | ρT10 |φ0〉 〈φ0 |] = (P1)2 |a1|2 + (P2)2

Contact with the TW heat bath will then bring the weights into canonical equilibrium distri-

butions, conditional upon the location of the piston:

|φ0〉 〈φ0 | → ρλ
W1(0)⊗ ρρ

W1(0)

|φR〉 〈φR | → ρλ
W1(hT )⊗ ρρ

W1(0)

|φL〉 〈φL | → ρλ
W1(0)⊗ ρρ

W1(hT )

Conclusion

The density matrix that results from the thermalisation in Stage (f) is

ρT11 = ρG0 ⊗
(
w4ρ

λ
W1(0)⊗ ρρ

W1(0)⊗ |φ0〉 〈φ0 |+ w5ρ
λ
W1(hT )⊗ ρρ

W1(0)⊗ |φR〉 〈φR |
+w6ρ

λ
W1(0)⊗ ρρ

W1(hT )⊗ |φL〉 〈φL |
)

(6.17)

where the statistical weights w4, w5 and w6 are calculated from the projections onto the |φ0〉 〈φ0 |,
|φR〉 〈φR | and |φL〉 〈φL | subspaces, respectively. Making use of the identities in Equation 5.26

that come from the unitarity of URES , we have:

w4 = (P2)2 + (P1)2 |a1|2

= (1− 2P1) + (P1)2
(
1 + |a1|2

)

w5 = P1

(
P2 + P1 |b1|2

)

= P1 − (P1)2
(
1− |b1|2

)

w6 = P1

(
P2 + P1 |c1|2

)

= P1 − (P1)2
(
1− |c1|2

)

After thermal equilibrium has been established, the mean energy is

ET11 =
1
2
kTG + 3kTW + (w5 + w6)MW ghT
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In (w5 + w6) proportion of the cases, the cycle will complete with one of the weights trapped at

height hT , gaining an energy MW ghT . This energy comes from thermal fluctuations of the weight,

and therefore is drawn from the TW heat bath. In these cases, the piston is located to one side,

or the other, of the Engine, and when the next cycle starts it will be another lowering cycle. This

shows that the lowering cycle proceeds by capturing thermal fluctuations from the TW heat bath,

and using them to compress the single atom gas. This transfers heat from the TW to the TG heat

bath. We have confirmed that the flow of energy in the lowering cycle is in the opposite direction

to the flow of energy in the raising cycle.

In w4 proportion of the cases, however, both weights will be on the floor at the end of a

lowering cycle, and the piston will be in the center. The next cycle of the Popper-Szilard Engine

will therefore be a raising cycle.

6.7 Energy Flow in Popper-Szilard Engine

We have now reached the conclusion of our analysis of the behaviour of the quantum mechanical

Popper-Szilard Engine. We shall briefly review the situation, before calculating the long term

behaviour of the Engine. This will enable us to prove that, for any choice of URES , the energy flow

will be from the hotter to the colder of TW and TG. Thus we will show that the Popper-Szilard

Engine is incapable of producing anti-entropic heat flows.

In Chapter 5 we analysed the detailed interactions between the microstates of the Engine,

restricting ourselves only by the requirement that the evolution of the system be expressed as a

unitary operator. We found that it was possible to extract energy from the quantum mechanical

one atom gas, and use it to lift a weight, without making a measurement upon the system. We

also found that we could try to reset the piston position, without having to perform work upon

it, albeit with some error. This error leads to some probability of the Engine going into a reverse

lowering cycle. However, we found that there was also a corresponding tendency for the Engine

on the lowering cycle to change back to a raising cycle.

An Engine which spends most of it’s time on raising cycles will transfer energy from the TG

to the TW heat baths, while an Engine which spends more time on lowering cycles will transfer

energy in the opposite direction. For the second law of thermodynamics to hold, these tendencies

must be balanced so that the long term flow of energy is always in the direction of the hotter to

the colder heat bath.

In this Chapter we have added statistical mechanics to the analysis. This allows us to optimise

the energy transferred between the one atom gas and the weights per cycle, and calculate the

probabilities that the Engine changes between the raising and lowering cycles. We can now use

these results to calculate the long term energy flow between the two heat baths.
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Energy Transfer per Cycle

On the raising cycle, the energy transfer is kTG ln 2 per cycle, from the TG heat bath to the TW

heat bath. We will regard the energy of any raised weights at the end of the cycle as part of the

energy of the TW system, even though it has not been dissipatively transferred to the TW heat

bath itself.

∆Er = kTG ln 2

On the lowering cycle, the energy transfer is from the raised weight to the TG heat bath. Again,

regarding the weights as part of the TW system, this constitutes a transfer of kTG ln 2 energy, but

now in the opposite direction

∆El = −kTG ln 2

Length of Cycles

If the probability of a cycle reversing is p, and of continuing is (1−p), then mean number of cycles

before a reversal takes place is 1/p.

For raising cycle, the probability of the cycle continuing is given by

1− Pr = w1

= 1− 1
2
P1

(
1 + |a1|2

)

and of reversing

Pr = w2 + w3

=
1
2
P1

(
1− |b1|2

)
+

1
2
P1

(
1− |b1|2

)

=
1
2
P1

(
1 + |a1|2

)

The mean number of raising cycles that takes place is therefore

Nr = 1/Pr =
2

P1

(
1 + |a1|2

)

The lowering cycle has continuation and reversal probabilities of

1− Pl = w5 + w6

= P1

(
2P2 + P1

(
|b1|2 + |c1|2

))

= 2P1 − (P1)2
(
1 + |a1|2

)

= 2P1(1− Pr)

Pl = w4

= (P2)2 + (P1)2 |a1|2

= (1− 2P1) + (P1)2
(
1 + |a1|2

)

= 1− 2P1(1− Pr)
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respectively. The mean number of lowering cycles is

Nl = 1/Pl =
1

(1− 2P1) + (P1)2
(
1 + |a1|2

)

Mean Energy Flow

As the Popper-Szilard Engine will alternate between series of raising and lowering cycles, in the

long term the net flow of energy from the TG to the TW heat baths, per cycle, is given by:

∆E =
Nr∆Er + Nl∆El

Nr + Nl

Substituting in the values and re-arranging leads to the final equation for the flow of energy in

the Popper-Szilard Engine

∆E = kTG ln 2


 (1− 2P1)

(
1− P1

2

(
1 + |a1|2

))

(1− 2P1) + (1 + 2P1)P1
2

(
1 + |a1|2

)

 (6.18)

It is interesting to note that, of all the possible values that could be chosen for the operation

URES , in the long run it is only the value |a1|2 that has any effect. The value of |a1|2 is related

to the probability of the lowering cycle reversing direction when both weights are trapped above

the shelf height. The symmetry of the Popper-Szilard Engine between the righthand and lefthand

states, and the existence of the unitarity constraints on URES , such as
∑

i |ai|2 = 1, lead to all

relevant properties expressible in terms of |a1|2.
The function

f(P1, |a1|2) =
(1− 2P1)

(
1− P1

2

(
1 + |a1|2

))

(1− 2P1) + (1 + 2P1)P1
2

(
1 + |a1|2

)

is plotted in Figure 6.1 as P1 and |a1|2 vary between the values of 0 and 1. This shows that

P1 <
1
2

⇒ f(P1, |a1|2) > 0

P1 =
1
2

⇒ f(P1, |a1|2) = 0

P1 >
1
2

⇒ f(P1, |a1|2) < 0

regardless of the value of a1



Figure 6.1: Mean Flow of Energy in Popper-Szilard Engine

Solution to Popper-Szilard Engine

TG > TW ⇒ P1 < 1
2 ⇒ ∆E > 0

TG = TW ⇒ P1 = 1
2 ⇒ ∆E = 0

TG < TW ⇒ P1 > 1
2 ⇒ ∆E < 0

(6.19)

This proves that despite the arguments in Chapter 4, the Popper-Szilard Engine is not, in the

long run, capable of violating the second law of thermodynamics, as defined by Clausius

No process is possible whose sole result is the transfer of heat from a colder to a

hotter body

Although we have now achieved our primary goal, of providing a complete analysis of the quantum

mechanical Popper-Szilard Engine, and demonstrating that it does not violate the second law of

thermodynamics, it will be useful to examine how the function f(P1, |a1|2) varies with the choice

of |ai|2, TG and TW .
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TG À TW When TG À TW , then P1 ≈ 0. In this situation, the gas is able to lift the weight

through a very large distance, compared with the mean thermal height of the weight. There is

correspondingly a vanishingly small probability that the unraised weights will be found above the

shelf height.

On the raising cycle, this leads to an unambiguous correlation between the piston states and

the location of the raised and unraised weights, and the piston will be reset with negligible error.

The raising cycle will therefore continue almost indefinitely.

Should the Engine find itself in a lowering cycle, however, at the end of the cycle both weights

will be found below the shelf height. The operation of URES will leave the piston in the center.

Lowering cycles will therefore immediately reverse into raising cycles.

The result is that the Engine will switch to and reliably stay on a raising cycle, and will transfer

kTG ln 2 energy from the hotter TG to the colder TW per cycle.

TG = TW If P1 = 1
2 , there is exactly 50% probability of finding an unraised weight above the

shelf height. The probabilities of continuing and reversing become

Pr = Pl =
1
4

(
1 + |a1|2

)

This varies between 1/4 and 1/2. The mean number of cycles before a reversal takes place is

between 2 and 4. As it is equal for raising and lowering cycles, in the long term there is no mean

flow of energy between the two heat baths. However, the energy transfer will fluctuate about this

mean.

TG ¿ TW When the gas temperature is much lower than the weight temperature the situation

is more complex, and the value of |ai|2 becomes more significant. P1 ≈ 1 implies that unraised

weights will always be located above the shelf height. The only part of URES that will be relevant

will be the projection onto the Pλ(RA)P ρ(RA) subspace. This part of the operation puts the

piston state into a superposition, which is dependant upon the values of the ai etc. parameters in

URES .

Let us first consider an operator for which a1 = 0. On the lowering cycle, the piston is in the

center of the Engine, and URES will always move it to one of the lefthand or righthand states.

Lowering cycles will therefore continue indefinitely. For the raising cycle, the piston comes out of

the box in the lefthand or righthand position, with equal probability, 1
2 . The unitarity requirements

then lead to |a2|2 + |a3|2 = 1. These are the probabilities of the raising cycle continuing, from the

lefthand and righthand piston positions, respectively. The overall probability of the raising cycle

continuing is therefore 1
2

(
|a2|2 + |a3|2

)
. This gives only a 50% chance that a raising cycle will

continue. On average, a raising cycle will only perform two cycles before reversing into a lowering

cycle. The long term behaviour of this is to stay on the lowering cycle, and transfer kTG ln 2 from

the hotter TW to the colder TG heat baths.
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If we increase a1, we start to introduce a possibility of the lowering cycle reversing into a raising

cycle. However, as we do this, we simultaneously reduce |a2|2 + |a3|2, reducing the ability of the

raising cycle to continue. If we reach a1 = 1, we guarantee that the lowering cycle will reverse

into a raising cycle. However, we have simultaneously removed all possibility of the raising cycle

continuing. The machine simply switches between the two cycles, producing a net zero energy

flow, despite the high temperature of TW .

If the value of P1 < 1, though, there is some possibility of an unraised weight being trapped

below the shelf. This increases the possibility of the machine staying on a lowering cycle, and

allows some flow of heat.

Density Matrix

We have derived these results in terms of the long term behaviour of the Popper-Szilard Engine,

implicity assuming that on each cycle of the Engine it is in either a raising or lowering cycle. We

now wish to re-examine this in terms of the density matrix of the system. For simplicity, we will

make use of the symmetry of the Engine, and set |b1|2 = |c1|2, and use the lowering cycle density

matrix

ρT12 =
1
2
ρG0 ⊗

(
ρλ

W1(hT )⊗ ρρ
W1(0)⊗ |φR〉 〈φR |+ ρλ

W1(0)⊗ ρρ
W1(hT )⊗ |φL〉 〈φL |

)

If the Engine starts the cycle in a general state, with some probability wr of being on a raising

cycle, the density matrix is:

ρT13 = wrρT0 + (1− wr)ρT12

After one cycle, it will be left in the state

ρT14 = (w4 + wr(w1 − w4))ρT0 + 2(w5 + wr(w2 − w5))ρT12

The Engine rapidly converges10 to a value of w0
r for which ρT14 = ρT13. This value is given by

w0
r =

w4

2w2 + w4

for which the density matrix can be shown to be

ρT15 =
Nr

Nr + Nl
ρT0 +

Nl

Nr + Nl
ρT12

This demonstrates that, even if we do not wish to interpret the system as being in a determinate

state, whose long run energy flow is given by Equation 6.18, the system will still rapidly settle into

a density matrix for which the mean flow on each cycle is given by ∆E. Thus, for this system the

statistical state at a particular time rapidly produces the same results as the average behaviour

over a large number of cycles.
10Excluding the case where P1 = 1, a1 = 0, which oscillates between ρT13 and (1− wr)ρT0 + wrρT12
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6.8 Conclusion

Let us step back from the detail by which the simple and expected result was achieved, and try

to understand why the attempt to produce anti-entropic behaviour fails. As we saw, the essential

property of the Engine’s long term behaviour is that it must spend more time on the raising cycle

when TG > TW , and more time on the lowering cycle when TG < TW . This turns on the value of

P1, and it’s dependancy on the temperatures of the gas and weights, and critically takes the value

of 1
2 when TG = TW . It is the relationship

P1 =
(

1
2

) TG
TW

which determines the direction of the mean flow of energy.

We must now examine how the various features that go into the derivation of P1 produce this

balance. The key relationship is between the thermal states of the weights and the gas. The thermal

state of the weight gives it a height above the floor of the Engine. This leads to a probability of

the weight being located above a given height. The thermal state of the gas, on the other hand,

allows energy to be extracted and used to raise the floor beneath the weight, to some height (or

the lowering of the floor beneath the weight, from some height, can be use to compress the gas).

The probability11 of finding the weight above a height h is e
¡ MW gh

kTW . The median height of the

weight is hm = kTW

MW g ln 2, which gives the height above which it is 50% likely that the weight will

spontaneously be found (the mean height 〈h〉 = kTW

MW g , which confirms the expectation value of the

potential energy kTW in Section 6.3) This height may be reduced by increasing the mass of the

weight, or by reducing it’s temperature.

However, the height through which the weight can be lifted, is set by it’s weight, and by

the temperature of the gas TG. The maximum height that can be achieved is using isothermal

expansion, which raises it by hT = kTG

MW g ln 2. This may be increased by reducing the mass, or

increasing the temperature of the gas.

We want hm < hT to be reliably transferring energy from TG to TW . If we decrease the

likelihood that an unraised weight is found above the height hT , we improve the probability that

the machine is properly reset to start the next cycle. Changing the mass does not help, as any

reduction in the median height of the weight is offset by a reduction in the height through which

it is lifted. Instead, we are forced to reduce TW or increase TG.

However, clearly, for hm < hT , then TW < TG. If we wish to transfer energy from a cold to a

hot heat bath we need TW > TG. In more than 50% of the cases, a shelf inserted at hT will find

the weight already lifted, without any action required by the gas. We only start to reliably (more

that 50% of the time) find the weight below the shelf height if the temperature of the weight is

below that of the gas - in which case we are simply arranging for heat to flow from a hotter to a

colder body, in agreement with the second law.
11This is the same as the Boltzmann distribution for a classical gas in a gravitational field.
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If we try to run the machine in reverse, we need to be able to reliably capture fluctuations in the

height of the weights and use them to compress the gas. To compress the gas, the weight must be

caught above the height hT . To be reliably (ie. with probability greater than 50%) caught above

this height, then hm > hT . Again, we find the balance between hm and hT implies TW > TG, so

that the heat flows from the hotter to the colder heat bath.

There are two key elements we have found. Firstly, unitarity constrains the operation of the

Engine. We are not able to ensure the machine stays on one cycle (raising or lowering) because the

resetting operation URES must be unitary and cannot map orthogonal to non-orthogonal states.

Furthermore, unitarity requires we define the operation over the entire Hilbert space of the Engine.

Once we define the operation of the Engine for one cycle, we find we have completely defined the

operation of the Engine on the reversed cycle. The way we attempt to extract Engine in one

direction automatically implies a flow of energy in the opposite direction.

The second element is the subtle balance between the thermal states of the two systems. When

we try to capture a fluctuation in the gas, and use it to lift the weight through some height, we

found that, unless the gas was hotter than the weight, then we were at least as likely to find the

weight already above that height, due to it’s own thermal state. Similarly, when we capture a

fluctuation in the height of the weight, and use the lowering of it to compress the gas, we find that,

unless the weight is hotter than the gas, probability of capturing the weight above the height is

less than the probability of finding the gas spontaneously in the compressed state.

In Chapter 8 we will show the general physical principles which underly these two elements.

This will enable us to generalise the conclusion of our analysis of the Popper-Szilard Engine.
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Chapter 7

The Thermodynamics of Szilard’s

Engine

Chapters 5 and 6 present a detailed analysis of the operation of the quantum Popper-Szilard

Engine. The conclusion showed that no operation of the Engine compatible with unitary dynamics

was capable of transferring energy from a colder to a hotter heat bath. It was not found necessary

to make any reference to information theory to reach this conclusion.

However, little reference has been made to thermodynamics either, so one might wonder if one

could equally abandon the concepts of entropy or free energy. In fact, the reason why we were

able to avoid referring to these is because the system studied is sufficiently idealised that it was

possible to explicitly construct operators upon the microstates and analyse statistical behaviour

of an ensemble of microstates. The only thermodynamic concept introduced was temperature, to

describe the statistical ensembles and the heat baths. This will not be possible for more complex

systems, involving many degrees of freedom. For such systems it will only be possible to usefully

describe them by aggregate properties, associated with an ensemble. However, this does not mean,

as it is sometimes asserted, that these ensemble properties are only valid for complex, many body

systems. The thermodynamic, ensemble properties can still be defined for simple, single body

systems.

In this Chapter we will analyse the thermodynamic properties of the Szilard Engine, and show

the extent to which they can be considered valid. We will be principally concerned with the

properties of entropy and free energy. This will give us a deeper understanding of the reason why

the Popper-Szilard does not operate in an anti-entropic manner, and will form the basis of the

general resolution of the problem in the next Chapter.

In Section 7.1 the concepts of free energy and entropy will be derived from the statistical

ensemble mean energy and pressure, for a system in thermal equilibrium at some temperature T .

This demonstrates that these concepts are quite valid for single atom systems. We will then give

some consideration to the meaning of these terms for systems exhibiting non-equilibrium mixing
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and for correlations between different systems. It will be shown that in some circumstances the

concept of free energy must be modified, and in other circumstances cannot be applied at all.

Entropy, on the other hand, remains well defined at all times.

Section 7.2 steps through the six stages of the raising cycle, given in Sections 5.6 and 6.6. The

entropy and free energy are tracked throughout the cycle. Section 7.3 then does the same for the

lowering cycle (Sections 5.6 and 6.7). It will be shown here that the entropy is always constant or

increasing, at all stages of the operation of the Engine. This conclusion is derived solely from the



The mean energy of the system is, of course,

E =
1
Z

∑
n

e¡ En
kT En

so the difference between the mean and free energy is given by the ’heat’

Q =
1
Z

∑
n

e¡ En
kT En + kT ln Z

= −kT
∑

n

e¡ En
kT

Z
ln

(
e¡ En

kT

Z

)

= −kTTr [ρ ln ρ]

with ρ = 1
Z e¡H/kT , as the density matrix of the system in equilibrium, thus confirming that

the Gibbs-von Neumann entropy SV N = −kTr [ρ ln ρ] exactly satisfies the statistical equation

E = F + TSV N , for systems in equilibrium. We will therefore always use this to define the

quantum mechanical entropy of a system. This gives us a physical basis for understanding the

thermodynamic quantities F and S. These properties must be understood as properties of the

statistical ensemble itself, introduced at the start of Chapter 6. Unlike the mean energy and

pressure, they do not correspond to the average of any property of the individual systems.

It should be carefully noted that the free energy and entropy have been given significance only

for ensembles of systems at a specific temperature T . The entropy SV N , however, is not depen-

dant upon the given temperature, and does not even require the system to be in thermodynamic

equilibrium to be calculated. We will therefore assume that SV N is always valid.

Free energy, however, has been defined with respect to thermal equilibrium at a particular

temperature. In Appendix G it is argued that the free energy can still be defined where there

is more than one temperature, but that it is not conserved. When a quantity of entropy S is

transferred reversibly, within a system, through a temperature difference ∆T , then the free energy

changes by a quantity −S∆T . This characteristic equation will occur at several points in our

understanding of the Popper-Szilard Engine.

7.1.1 One Atom Gas

We will now apply these concepts to the one atom gas, confined within a box. We will consider here

only the situation where the one atom gas is confined entirely to the left of a piston at location Y .

The changes in thermodynamics properties of the single atom gas will be shown to be consistent

with an ideal gas, even though there is a single particle involved.

Free Energy

The density matrix of the gas is given in Equation 6.7 by ρλ
G6(Y ). This has function

Zλ
G6(Y ) =

∑
n

e
¡ ε

kTG
( 2l

Y +1−p )2

≈ Y + 1− p

4

√
πkTG

ε
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giving a free energy

Fλ
G6(Y ) =

kTG

2

(
4 ln 2− ln

(
πkTG

ε

)
− 2 ln(Y + 1− p)

)

It will be convenient to also calculate the free energy for the gas when there is no partition

present at all. This has density matrix ρG0, in Equation 6.4 with

ZG0 =
∑

n

e
¡ εn2

kTG

≈
∫

e
¡ εn2

kTG dn =
1
2

√
πkTG

ε

so has free energy

FG0 =
kTG

2

(
2 ln 2− ln

(
πkTG

ε

))
(7.1)

This gives

Fλ
G6(Y ) = FG0 + kTG ln

(
2

Y + 1− p

)
(7.2)

If we neglect terms of order k ln(1− p), this gives us the results

Fλ
G6(0) ≈ FG0 + kTG ln 2

Fλ
G6(1− p) ≈ FG0

As we saw in Section 6.2, the work performed upon the piston by the expansion of the one atom

gas is simply

∆W = kTG ln
(

Y + 1− p

2

)

so this confirms

Fλ
G6(Y ) + ∆W = constant

or equivalently, the change in free energy of the system is equal to the work performed upon the

system.

Entropy

We calculate the entropies directly from the density matrix

SG0 =
k

2

(
1 + ln

(
πkTG

ε

)
− 2 ln 2

)

Sλ
G6(Y ) =

k

2

(
1 + ln

(
πkTG

ε

)
− 4 ln 2 + 2 ln(Y + 1− p)

)

= SG0 − k ln
(

2
Y + 1− p

)
(7.3)

which gives the approximate results for the piston in the center and end of the box

Sλ
G6(0) ≈ SG0 − k ln 2

Sλ
G6(1− p) ≈ SG0

The entropy of the gas increases by k ln 2 as it expands to fill approximately twice it’s initial

volume.
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Heat Bath

The internal energy of the gas, given in Equation 6.7, is constant at 1
2kTG. The free energy

extracted from the expansion must be drawn from the contact the gas has with the heat bath.

This means an energy of kTG ln
(

Y +1¡p
2

)
comes out of the TG heat bath.

It can be readily be shown that when the energy change in the heat bath is small compared to

it’s total energy, then the entropy change in the heat bath is given by

dS =
dE

T

We include this entropy change in the heat bath

STG
(Y ) = −k ln

(
Y + 1− p

2

)

to our analysis. This gives a combined entropy of

STG
(Y ) + Sλ

G6(Y ) =
k

2

(
1 + ln

(
πkTG

ε

)
− 4 ln 2

)

which is a constant. This confirms our expectations for a reversible process.

We may also note that, in Section 6.2 the pressure obeys the relationship

P (Y )V (Y ) = kTG

where we define the ’volume’ of the gas as the length of the box

V (Y ) = Y + 1− p

that gas occupies. This relationship hold for isothermal expansion and compression, where the

temperature is constant. For isolated expansion and compression, where the temperature is variable

P (Y )V (Y ) = kT

still holds, but in addition, the one atom adiabatic relationship

P (Y )V (Y )3 = constant

hold true (see also [BBM00]). The single atom gas therefore acts in exactly the manner we would

expect from the thermodynamic analysis of an ideal gas.

7.1.2 Weight above height h

We now calculate the thermodynamics properties of a single atom weight, supported at a height

h. Again, we will analyse how the free energy and entropy changes as the height is changed, and

we will connect this to the thermodynamic state of the one atom gas, being used to lift a weight

through the pressure it exerts upon a piston.
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Free Energy

In Section 6.3 the thermal state of the weight is given in Equation 6.9. The free energy may be

calculated directly from ZW1(h) as

FW1(h) = MW gh− kTW

(
3
2

ln
(

kTW

MW gH

)
− ln

(
2
√

π
))

= FW1(0) + MW gh

As was noted before, the work done in raising a weight through a height h is always MW gh,

regardless of the ensemble, so again we confirm the status of the free energy.

Substituting the isothermal gearing ratio h(Y ) = kTG

MW g ln
(
1 + Y

1¡p

)
gives

FW1 (h(Y )) = FW1(0) + kTG ln
(

1 +
Y

1− p

)
(7.4)

which produces

FW1(hT ) = FW1(0) + kTG ln 2

If we use the expansion of the one atom gas to lift the weight, (or the compression of the weight

lifting the gas) then

FW1 (h(Y )) + Fλ
G6(Y ) = constant

Entropy

Taking the density matrix ρW1(h), we calculate the entropy to be

SW1 =
3k

2

(
1 + ln

(
kTW

MW gH

)
− 2

3
ln

(
2
√

π
))

(7.5)

This is independant of the height h of the weight. As the entropy of the weight does not change,

it is easy to see from E = F + TS that the change in internal energy of a raised weight is exactly

equal to it’s change in free energy, and therefore equal to the work done upon the weight. This

agrees with the conclusion in Section 6.3 that no heat need be drawn from or deposited within a

heat bath, for a weight to be raised or lowered in thermal equilibrium.

The combination of the one atom gas and the quantum weight behaves exactly as we would

expect for a reversible thermodynamic system. The application of the thermodynamic concepts of

free energy and entropy to these systems have presented no special problems.

7.1.3 Correlations and Mixing

The systems considered in the previous Subsection are always described by a product of density

matrices

ρ = ρW1(h(Y ))⊗ ρλ
G6(Y )

For the Popper-Szilard Engine, we will have to consider more complex density matrices, were

the subsystem density matrices are not product density matrices, but instead have correlations
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between their states. We must now address the behaviour of thermodynamic properties where

systems become correlated. To do this we must consider two different features: the mixing of an

ensemble from two or more subensembles1, and the correlation of two or more subsystems.

Entropy

The entropy of composite systems can be defined directly from the properties of SV N [Weh78]. If

there are two independent systems, with a total density matrix ρ = ρ1⊗ ρ2 then the total entropy

is additive, S = S1 + S2, where S1 = kTr [ρ1 ln ρ1] etc. When the total density matrix is given as

the sum of two orthogonal subensembles, so that ρ = paρa + pbρb where pa + pb = 1 and ρaρb = 0,

then the total entropy is given by the formula S = paSa + pbSb − kpa ln pa − kpb ln pb. This can be

generalised to

S =
∑

piSi − k
∑

pi ln pi (7.6)

These two results may be combined to calculate the entropy of correlated systems, such as

ρ = paρa1 ⊗ ρa2 + pbρb1 ⊗ ρb2 , which has an entropy of S =
∑

pi (Si1 + Si2)− k
∑

pi ln pi.

Free Energy

For free energy, the problem is more subtle. We can consistently assume that the free energy of

two independant systems are additive, so that F = F1 + F2. However, we must be careful when

considering a mixture, if it is not an equilibrium mixture. If we suppose we have a system in

equilibrium at temperature T , then the free energy is given by

F = −kT ln
(∑

e¡ Ei
kT

)

Now let us consider the effect of splitting the system into two orthogonal subspaces, with equilib-

rium density matrices ρa and ρb. These density matrices have partition functions

Za =
∑

i‰a

e¡ Ei
kT

Zb =
∑

i‰b

e¡ Ei
kT

Z = Za + Zb

It can be readily shown that for the combined density matrix ρ = paρa + pbρb to be in thermal

equilibrium, then Za = paZ and Zb = pbZ. This allows us to calculate the free energy of the

subensembles using the formula
1Throughout we will refer to the combination of subensembles as a ’mixture’ or ’mixing’. Unfortunately this

term is used in several different ways when associated with entropy. Here we will use it exclusively to refer to

the relationship between an ensemble and it’s subensembles, that the density matrix of an ensemble is a ’mixed

state’ of the density matrices of it’s subensembles. This should not be confused with the ’entropy of mixing’ that

occurs when ’mixtures’ of more than one substance is considered [Tol79][Chapter XIV] or the ’mixing’ or ’mixing

enhancement’ associated with coarse graining [Weh78].
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Fa = −kT ln Za = F − kT ln pa (7.7)

and similarly for ρb. This will turn out to be a key relationship in understanding the thermody-

namic explanation for the failure of the Popper-Szilard Engine.

Using Equation 7.7 we can re-write F as

F =
∑

piFi + kT
∑

pi ln pi (7.8)

or equivalently

F = −kT ln
(∑

e¡ Fi
kT

)

and we also find that

pa = e
−Fa

kT∑
e
− Fi

kT

= e
F−Fa

kT (7.9)

It is important to note that these relationships are no longer a sum over the individual eigen-

states. They are summations over the orthogonal subspaces, or the subensembles. Rather than

relating the total free energy to the logarithmic averaging over the individual energies, they relate

the free energy to the logarithmic averaging over the free energies of the subensembles. Similarly,

the probabilities are not those of the individual eigenstates, depending upon the individual ener-

gies, they are the probabilities of the subensemble, and they depend upon the free energy of that

subensemble.

Equation 7.7 will turn out to be very important in the next Chapter. The value of −kT ln p is

always positive, so the free energy of a subensemble is always greater than the free energy of the

ensemble from which it is taken. Despite the similarity of the equations S =
∑

piSi − k
∑

pi ln pi

and F =
∑

piFi +kT
∑

pi ln pi, it should be noted that there is no equivalent relationship to (7.7)

between the entropy of an ensemble and the entropy of it’s subensembles. While the entropy of an

ensemble must be greater than the mean entropy of it’s subensembles (S ≤ ∑
piSi) , there is no

such restriction upon it’s relationship to the entropies of the individual subensembles.

While we have

F ≤ Fa

for all a for free energies, we only have

min (Sa) ≤ S ≤ max (Sa) + lnN

where N is the dimension of the Hilbert space of the system, for entropy. It may be higher than

all the subensemble entropies, but may also be lower than any but the minimum entropy.

159



We now must understand how the free energy is affected when we form the non-equilibrium

density matrix ρ0 = p0
aρa + p0

bρb where p0
a 6= pa (we will assume that the subensembles ρa and ρb

are themselves in thermal equilibrium at temperature T , and that it is only their mixing that is

not in proportion).

This is a subtle problem and is addressed in Appendix H. There it is shown that free energy

can be meaningful for such mixtures, and that the relation

F =
∑

piFi + kT
∑

pi ln pi

is still valid, but that the equations Fa = F − kT ln pa and F = −kT ln
(∑

e¡ Fi
kT

)
cannot be

used directly2. We can therefore calculate the free energy of a non-equilibrium mixture, at a given

temperature, but we cannot use the free energy of the subensemble to calculate it’s probability, in

the manner Equation 7.9 allows.

While we have defined free energy for non-equilibrium mixtures at a specific temperature,

we should notice that the temperature plays a key role in the change of the free energy with

mixing. For this equation to be valid, the relevant subensembles must themselves be in thermal

equilibrium at some temperature T . In particular, when we have a correlated density matrix

ρ = paρa1 ⊗ ρa2 + pbρb1 ⊗ ρb2 and systems 1 and 2 are at different temperatures to each other,

there is clearly no well defined temperature T for the mixture between pa and pb. In this situation

it appears that the concept of free energy has been stretched to it’s limit and can no longer be

regarded as a well defined, or meaningful, quantity. This is significant, as at several points in

the cycle of the Popper-Szilard Engine, the system will be described by precisely such a correlated

density matrix. We will not be able to assume that the free energy remains well defined throughout

the operation of the Engine.

7.2 Raising cycle

We will now apply these results to the raising cycle of the Szilard Engine, to parallel the statistical

mechanical analysis in Section 6.5. The density matrices ρT0 to ρT5 are given in that Section. The

raising cycle is shown in Figure 4.5.

Stage a In the initial state of the raising cycle, the density matrix is

ρT0 = ρG0 ⊗ ρλ
W0 ⊗ ρρ

W0 ⊗ |φ0〉 〈φ0 |

To maintain a certain level of generality we will assume that the piston states all have a notional

internal free energy FP and entropy SP .

The initial entropy and free energy is given by

ST0 = SP + SG0 + 2SW1

2Combining the results for this non-equilibrium mixing of F and S, it can be shown that the statistical equation

E = F + TS is still valid
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FT0 = FP + FG0 + 2FW1

On raising the partition and inserting the piston in the center of the box, we have a new density

matrix

ρT1(0) =
1
2

(
ρλ

G6(0) + ρρ
G6(0)

)⊗ ρλ
W0 ⊗ ρρ

W0 ⊗ |Φ(0)〉 〈Φ(0) |

Mixing the entropy and the free energies of the gas subensembles ρλ
G6(0) and ρρ

G6(0) at tem-

perature TG gives

SG1 =
(

1
2
Sλ

G6(0) +
1
2
Sρ

G6(0)
)
− k

(
1
2

ln
1
2

+
1
2

ln
1
2

)

=
k

2

(
1 + ln

(
πkTG

ε

)
− 2 ln 2 + 2 ln(1− p)

)

FG1 =
(

1
2
Fλ

G6(0) +
1
2
F ρ

G6(0)
)

+ kTG

(
1
2

ln
1
2

+
1
2

ln
1
2

)

=
kTG

2

(
2 ln 2− ln

(
πkTG

ε

)
− 2 ln(1− p)

)

Neglecting terms of order ln(1−p) we have SG1 ≈ SG0, FG1 ≈ FG0 so the total entropy ST1 and

free energy FT1 are unchanged from ST0 and FT0. The insertion of the piston requires negligible

work and is reversible.

Stage b During the expansion phase of the raising cycle, the density matrix of the system ρT1(Y )

is a correlated mixture of subensembles at different temperatures TG and TW . It follows that the

free energy is not well defined during this expansion phase. At the end of the expansion the density

matrix becomes

ρT1(1− p) =
1
2

(
ρλ

G6(1− p)⊗ ρλ
W1(hT )⊗ ρρ

W0 ⊗ |Φ(1− p)〉 〈Φ(1− p) |
+ρρ

G6(−1 + p)⊗ ρλ
W0 ⊗ ρρ

W1(hT )⊗ |Φ(−1 + p)〉 〈Φ(−1 + p) |)

Examining these terms we note that ρλ
G6(1− p) ≈ ρρ

G6(1− p) ≈ ρG0, so the gas can be factored

out of the correlation, and only the weight temperature TW is involved in the mixing.

The raised weight subensemble ρλ
W1(hT ) is not orthogonal to the unraised ρλ

W1(0), but the

piston states |Φ(1− p)〉 〈Φ(1− p) | and |Φ(−1 + p)〉 〈Φ(−1 + p) | are orthogonal, so we can use the

mixing formula for the entropy and free energy, to get

ST1 = SG0 + SP + 2SW1 + k ln 2

FT1 = FG0 + FP + 2FW1 + kTG ln 2− kTW ln 2

= FG0 + FP + 2FW1 − kTW ln(2P1)

where we have used the relationship P1 =
(

1
2

) TG
TW to substitute kTG ln 2 = −kTW ln(P1).

During the course of the expansion, kTG ln 2 heat is drawn from the TG heat bath, causing an

decrease in entropy of k ln 2. This compensates for the increase in the entropy of the engine, and

confirms that the process so far has been thermodynamically reversible.
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During the expansion phase the free energy becomes undefined. At the end of this phase, it has

changed by an amount FT1−FT0 = −kTW ln(2P1) = −(TW −TG)k ln 2. This is just a free energy

change of ∆F = −S∆T , where the entropy k ln 2 has been transferred from the TG heat bath to

the weights and piston at TW . This is the occurrence of the characteristic equation discussed in

Appendix G.

Stage c Shelves now come out on both sides of the machine, at a height hT to support a raised

weight. This divides an unraised density matrix into the subensembles for above and below the

shelf. In Sections 6.5 and 6.6 it was assumed that the unraised density matrix divides into two

orthogonal subensembles

ρW1(0) = P1ρW0(hT )00 + P2ρW0(0)00

without interference terms.

This implies the entropies and free energies combine according to

SW1 = (P1SW0(hT )00 + P2SW0(0)00)− k (P1 ln P1 + P2 ln P2)

FW1(0) = (P1FW0(hT )00 + P2FW0(0)00) + kTW (P1 ln P1 + P2 ln P2) (7.10)

(7.11)

and so inserting the shelves would be both reversible, and involve negligible work.

Unfortunately, it is not possible to directly confirm these relations. We can estimate the free

energy and entropy of ρW0(hT )00 as the same as the free energy and entropy of the raised weight

ρW1(hT ). However, as we do not have suitable approximations for the wavefunctions trapped

below the shelf, we cannot calculate the entropy or free energy for ρW0(0)00.

For the reasons given in Appendix E, if kTW À MW ghT or kTW ¿ MW ghT the insertion

of the shelf should be reversible and involve negligible work, and it is reasonable to assume that

this will also be true at intermediate heights for high temperature systems (kTW À MwgH, the

characteristic energy of the ground state). If this is the case, Equations 7.11 will then be true.

This assumption simply allows us to continue to calculate entropy and free energies during

Stages (c-e) of the cycle. It does not affect the behaviour of the Engine itself, as the interference

terms will disappear in Stage (f) of the cycle. The only part of the assumption that is significant

is that the insertion of the shelf requires negligible work. This is similar to inserting the narrow

barrier into the one atom gas, which was proved to require negligible work in Section 6.23.

We will therefore assume that Equations 7.11 are true, from which it can immediately be seen

that the free energy and entropy of ρT2 is the same as for ρT1.

Stage d The piston is now removed from the box. The only affect of this is to change ρρ
G6(1−p)

and ρλ
G6(−1 + p) into ρG0. This has negligible effect upon the free energy or entropy of the gas

states, so the thermodynamic properties of ρT3 are also unchanged from ρT1.
3It should also be noted that if this assumption is false, it would imply a difference between the quantum and

classical thermodynamics of a particle in a gravitational field, even in the high temperature limit.
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Stage e The operation of Ureset then takes the density matrix on the raising cycle to ρT4. Only

the piston states are changed by this, and so again, there is no change in entropy or free energy.

Stage f The shelves are removed and the system is allowed to thermalise, leading to a final

density matrix of

ρT5 = ρG0 ⊗
(
w1ρ

λ
W1(0)⊗ ρρ

W1(0)⊗ |φ0〉 〈φ0 |+ w2ρ
λ
W1(hT )⊗ ρρ

W1(0)⊗ |φR〉 〈φR |
+w3ρ

λ
W1(0)⊗ ρρ

W1(hT )⊗ |φL〉 〈φL |
)

(7.12)

from Equation 6.15.

In the w1 portion of the density matrix, MwghT energy is dissipated into the TW heat bath,

increasing it’s entropy. The total entropy is therefore

ST5 = SG0 + w1

(
2SW0 + SP +

MwghT

Tw

)
+ w2 (SW0 + SW1(hT ) + SP )

+w3 (SW0 + SW1(hT ) + SP )− k
∑

n=1,3

wn ln wn − k ln 2

= ST0 − k
∑

n=1,3

wn ln wn − k ln 2− k ln P1

where we have included the / /



TG Gas Piston Weight 1 Weight 2 TW

Stage a

Energy / 1
2kTG / 3

2kTW
3
2kTW /

Entropy / SG0 Sp SW1 SW1 /

Free Energy / FG0 FP FW1 FW1 /

Stage b

Energy −kTG ln 2 1
2kTG / 3kTW + MW ghT /

Entropy −k ln 2 SG0 Sp + 2SW1 + k ln 2 /

Free Energy / FG0 FP + 2FW1 − kTW ln(2P1) /

Stage f

Energy −kTG ln 2 1
2kTG / 3kTW − (w2 + w3)kTW ln P1 −kw1TW ln P1

Entropy −k ln 2 SG0 Sp + 2SW1 − k
∑

w ln w −kw1 ln P1

Free Energy / FG0 FP + 2FW1 + kTW (
∑

w ln w − (w2 + w3) ln P1) /

Table 7.1: Thermodynamic Properties of the Raising Cycle

Figure 7.1: Change in Entropy on Raising Cycle for (a) |c1|2 = 0 and (b) |b1|2 = |c1|2

there is negligible increase in entropy due to mixing. However, the entropy decrease when energy

is extracted from the TG heat bath is much less than the entropy increase when that same energy

is deposited in the TW heat bath.

In addition, it can be seen that when either |a1|2 = 1 or |b1|2 = 1, and P1 = 1 the net entropy

increase is zero. In this case TG ¿ TW and the unraised weights are always located above the shelf

height. The entropy increase here arises only from the decoherence of the superposition of the piston

states, |φ2〉 〈φ2 | and |φ3〉 〈φ3 |, after the operation of URES . When any of |a1|2 , |b1|2 , |c1|2 = 1,

the piston is not left in a superposition, so there is no increase in entropy.

The free energy changes by

kTW ln(2P1) = k(TW − TG) ln 2

during Stage (b), as k ln 2 entropy is transferred from the gas and TG heat bath to the weights and

TW heat bath. In the final stage it changes again, alongside the entropy increase, to give a net
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change of
∆FR

kTW
=

∑
n=1,2,3

wn ln wn − (w2 + w3) ln P1

over the entire cycle. This can be shown to always be negative. We should not be surprised by

this, as our objective was to drop the weight we had lifted, and so dissipate the energy used to

raise it.

7.3 Lowering Cycle

The lowering cycle is shown in Figure 5.7. Following the stages of this cycle given in Section 6.6,

where the density matrices ρT6 to ρT11 are defined, we will now calculate it’s thermodynamic

properties.

Stage a Assuming the piston starts initially on the right, the initial density matrix is ρT6 and

the entropy and free energies are given by

ST6 = SP + SG0 + 2SW1

FT6 = FP + FG0 + 2FW1 + kTG ln 2

and will be negligibly affected by the piston being inserted into one end of the box.

Stage b Under the operation of UW4, the raised weight is lowered, compressing the gas. During

this stage, the density matrix is

ρT7(Y ) = ρλ
G6(Y )⊗ ρλ

W1(h(Y ))⊗ ρρ
W1(0)⊗ |Φ(Y )〉 〈Φ(Y ) |

giving entropies and free energies

ST7(Y ) = Sλ
G6(Y ) + SP + 2SW1

= ST6 − k ln
(

2
Y + 1− p

)

FT7(Y ) = Fλ
G6(Y ) + Fp + FW1(0) + FW1(h(Y ))

= FT6

During the compression, kTG ln
(

2
Y +1¡p

)
heat is transferred from the gas to the TG heat bath,

giving a compensating rise in entropy. At the end of this stage, the entropy of the gas has reduced

by approximately k ln 2, having halved in volume, and the entropy of the TG heat bath has increased

by the same amount. The total free energy remains constant, as the work done by the weight in

work done reversibly upon the gas.

Stage c Shelves are inserted into the thermal state of the two weights at height hT . As explained

in Stage c of the raising cycle above, we must assume that this takes place reversibly and with

negligible work. The density matrix ρT8 will then have the same entropy and free energy as ρT7(0)

at the end of Stage b.

165



Stage d The operation of URI now removes the piston from the center of the box. The gas is

now able to freely expand to occupy the entire box, so that ρλ
G6(0) → ρG0. This leaves the system

in state ρT9.

The internal energy of these two density matrices are both 1
2kTG, and no work is done upon

the gas, so no energy is drawn from the TG heat bath by this free expansion. However, the entropy

of the gas increases by k ln 2 and the free energy decreases by a corresponding amount kTG ln 2.

There is no compensating entropy decrease anywhere else in the system.

Stage e The application of URES takes ρT9 to ρT10. This changes only the state of the piston,

and does not affect the entropy or free energy.

Stage f Finally, the removal of the shelves and contact with the TW heat bath leaves the system

in the state

ρT11 = ρG0 ⊗
(
w4ρ

λ
W1(0)⊗ ρρ

W1(0)⊗ |φ0〉 〈φ0 |+ w5ρ
λ
W1(hT )⊗ ρρ

W1(0)⊗ |φR〉 〈φR |
+w6ρ

λ
W1(0)⊗ ρρ

W1(hT )⊗ |φL〉 〈φL |
)

(7.13)

from Equation 6.17.

In the (w5 + w6) part of the density matrix, a thermal fluctuation has caught a weight above

one of the shelves. This draws MW ghT energy from the TW heat bath, decreasing it’s entropy.

The total entropy and free energy at the end of the lowering cycle is therefore

ST11 = SG0 + SP + 2SW − k
∑

n=4,6

wn ln wn + k(w5 + w6) ln P1 + k ln 2

FT11 = FG0 + FP + 2FW + kTW

(
(w5 + w6) ln P1 −

∑
n=4,6

wn ln wn

)

where we have explicitly included the entropy changes in the two heat baths.

Summary Table 7.2 summarises the changes in energy, entropy and free energy for the lowering

cycle. The values are shown at the end of Stages a, b, d and f, and again, where subsystems are

correlated, the entropy and free energy are shown as a total across the relevant columns.

Again, we see that the total energy is constant throughout the operation. The entropy changes

at two points. During Stage d, when a free expansion of the one atom gas takes place, the entropy

of the gas increases by k ln 2. At Stage f, there is a further entropy change when the weights are

allowed to thermalise through contact with the TW heat bath. There is an entropy decrease of

(w5 +w6) ln P1, where thermal energy from the heat bath is trapped in a fluctuation of the weight,

but an increase of −∑
n=4,5,6 wn ln wn. The change in entropy at this stage is therefore

∆SL

k
= (w5 + w6) ln P1 −

∑
n=4,5,6

wn ln wn

which is always positive. This is shown in Figure 7.2, for the two extremes, where |c1|2 = 0 and
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TG Gas Piston Weight 1 Weight 2 TW

Stage a

Energy / 1
2kTG / 3

2kTW + MW ghT
3
2kTW /

Entropy / SG0 Sp SW1 SW1 /

Free Energy / FG0 FP FW1 + MW ghT FW1 /

Stage b

Energy kTG ln 2 1
2kTG / 3

2kTW
3
2kTW /

Entropy k ln 2 SG0 − k ln 2 Sp SW1 SW1 /

Free Energy / FG0 + kTG ln 2 FP FW1 FW1 /

Stage d

Energy kTG ln 2 1
2kTG / 3

2kTW
3
2kTW /

Entropy k ln 2 SG0 Sp SW1 SW1 /

Free Energy / FG0 FP FW1 FW1 /

Stage f

Energy kTG ln 2 1
2kTG / 3kTW − (w5 + w6)kTW ln P1 (w5 + w6)kTW ln P1

Entropy k ln 2 SG0 Sp + 2SW1 − k
∑

w ln w (w5 + w6)k ln P1

Free Energy / FG0 FP + 2FW1 + kTW (
∑

w ln w − (w5 + w6) ln P1) /

Table 7.2: Thermodynamic Properties of Lowering Cycle

|b1|2 = |c1|2. Notice that the net change in entropy over the entire cycle includes an additional

increase of k ln 2 from Stage d. The minimum entropy increase on the lowering cycle is therefore

k ln 2.

The minimal increase in entropy occurs in two special cases. The first case is the same as on the

raising cycle, when P1 = 1 the weights are always located above the shelf height. The decoherence

of |φ1〉 〈φ1 | when the weights are brought into contact with the TW creates an entropy increase,

unless the operation of URES is such that |φ1〉 〈φ1 | is not a superposition.

The second case is when P1 = 0, regardless of choice of URES . In this case, at the end of Stage

e, both weights will be found unambiguously below the shelf height. The effect of URES must

leave this unchanged, and only |φ0〉 〈φ0 |, the piston in the center, is compatible with this state.

No entropy increase takes place at this stage, and the Engine cycle reverses. However, there is still

the k ln 2 entropy increase that occurred during Stage d.

The free energy similarly changes twice, both times as a direct result of the change in entropy.

At Stage d, the increase in the gas entropy leads to a reduction in free energy of kTG ln 2, while

during Stage f, the it changes by −kTW ((w5 + w6) ln P1 −
∑

n=4,5,6 wn ln wn), giving a net change

∆FL

kTW
= w4 ln P1 +

∑
n=4,5,6

wn ln wn

over the complete cycle. All terms in this are negative. The free energy must be reduced over the

course of a lowering cycle.
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Figure 7.2: Change in Entropy on Lowering Cycle for (a) |c1|2 = 0 and (b) |b1|2 = |c1|2

7.4 Conclusion

We have now completed a detailed analysis of the thermodynamic quantities associated with the

operation of the quantum Szilard Engine.

The free energy becomes undefined at certain stages, and can sometimes increase. However,

when such an increase occurs it is compatible with the characteristic equation (G.1), and over the

course of an entire cycle, the change in free energy will be negative.

The entropy of the correlated systems also behaves as would be expected. It is constant for

all reversible processes, and increases for irreversible processes. Regardless of the choice of the

resetting operation, or of the temperatures of the two heat baths, it always increases over the

course of a raising or lowering cycle. There is an important subtlety to this result. In Chapter

6 we accepted that an anti-entropic cycle (such as a raising cycle when TW > TG) may continue,

with some probability, despite the fact that the energy flow would be from colder to hotter. All

we concluded was that the probability of the anti-entropic flow reversing would ensure the mean

energy flow, over the long run, would be from hotter to colder. Now we appear to be saying that,

even so, the entropy must always increase.

The answer to this apparent contradiction lies in the interpretation of the entropy of the density

matrix. In Chapter 6 we assumed that the Engine was always either on a raising or a lowering

cycle, and we concerned ourselves with the corresponding transfer of energy between the two heat

baths.

To apply the concept of entropy, we must consider the density matrices ρT5 and ρT11. In

these, the Engine is described by a mixture of states, and so is not determinately upon a raising

or lowering cycle. This implies an additional entropy of mixing. The results of this Chapter

demonstrate that, even when the Engine starts on an anti-entropic cycle, at the completion of that

cycle the entropy due to mixing in the final state of the Engine will always be larger than the

reduction in entropy we may have achieved from transferring heat between the two baths.
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Chapter 8

Resolution of the Szilard Paradox

In Chapters 5, 6 and 7 we have presented a detailed analysis of the operation of the Popper-Szilard

Engine. This has shown that, within certain limitations, thermodynamic concepts are applicable

to the single atom systems, and that no operation of the Popper-Szilard Engine was capable of

violating the second law of thermodynamics. However, we have not as yet gained any real insight

into why the Engine cannot work, nor why some further modification of the Engine would not be

successful. In this Chapter we will attempt to address these issues by uncovering the essential

properties of the Engine, demonstrate that these properties are central to the general problem of

Maxwell’s Demon, and explaining the thermodynamics underlying them.

In Section 8.1, we will consider first part of the role played by the demon. The demon makes a

measurement upon the system of interest, and changes the state of the system, conditionally upon

the result of that measurement. This attempts to eliminate the mixing entropy of the ensemble.

However, the requirement of unitary evolution leads to a change in the state of the demon itself.

We will show that the piston plays exactly the role of the demon within the Popper-Szilard Engine.

The first stage of the resolution therefore rests in the consideration of the effect the measurement

has upon the demon itself.

The second stage of the resolution considers the consequences of the change in the demons state,

and the attempts to complete the thermodynamic cycle. This problem is raised, but only partly

addressed, by advocates of Landauer’s Principle as the resolution to the problem. In Section 8.2,

it is shown that the key thermodynamic relationship is one relating the probabilities of thermal

fluctuations at different temperatures. This relationship shows why the probabilistic attempt to

reset must fail, and why attempts to improve upon this, by performing work upon the system,

leads at best to the Carnot cycle efficiency. This cycle differs from the phenomenological Carnot

cycle, however, as it operates through correlations in the statistical states of the subsystems, to

transfer entropy, rather than energy, between subsystems at different temperatures. It is further

shown, from this relationship, that the attempt to capture statistical fluctuations will always be

an ineffective method of extracting work from a thermal system.
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This provides a comprehensive resolution to the general Maxwell’s demon problem. In Section

8.3 we will re-examine the arguments offered in Chapter 4 and demonstrate they are, at best,

partial resolutions, each focussing upon one aspect of the overall solution.

8.1 The Role of the Demon

We need to understand what are the essential features in the system, that constrains the evolution

of the Popper-Szilard Engine in such a way that it fails to operate as intended. The essential

restriction placed upon it was that it must be described by a unitary operator. The construction of

an appropriate unitary operator in Chapter 5 depended upon the moveable piston in two particular

ways. We will now examine this dependancy and show that this captures the essential role played

by the Demon.

In Section 5.3 the unitarity of the expansion of the gas states, in Equations 5.12 and 5.13, is

guaranteed only through the orthonormality relationship, on the gas and piston states, in Equation

5.14:

〈Ψα
k (Ym)ΦA(Ym)

∣∣∣Ψβ
l (Yn)ΦB(Yn)

〉
= δnmδαβδklδAB (8.1)

However, this orthonormality does not come from the gas states themselves, as the initially left

and right gas states may become overlapping under the action of the unitary operator UT2. It is

the orthonormality of the different piston states, in Equation 5.9, that allows us to construct a

suitable unitary operator. However, it is also the orthonormality of the final piston states that

means we cannot construct a unitary operator to reset the piston states and reliably start another

cycle of the Engine.

First we will examine precisely the role of the piston states. This will show that the piston

fulfils exactly the same role that is required of a Maxwell’s Demon. We will be able to characterise

the general role of Maxwell’s Demon as an attempt to reverse the mixing between subensembles

in Equations 7.6 and 7.8. It is then shown that the Demon can only achieve such a reversal by

increasing it’s own entropy by at least as much again.

8.1.1 The Role of the Piston

Let us examine the role of the piston, in the Popper-Szilard Engine, in some detail. If we con-

sider the raising cycle, the insertion of the partition into the gas divides it into two orthogonal

subensembles

ρG1 =
1
2
ρλ

G6(0) +
1
2
ρρ

G6(0)

During the expansion Stage b, the correlated density matrix is

ρT1(Y ) =
1
2
ρλ

G6(Y )⊗ ρλ
W1(h(Y ))⊗ ρρ

W1(0)⊗ |Φ(Y )〉 〈Φ(Y ) |

+
1
2
ρρ

G6(Y )⊗ ρλ
W1(0)⊗ ρρ

W1(h(Y ))⊗ |Φ(−Y )〉 〈Φ(−Y ) |
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None of the gas or weight subensembles are orthogonal in this expansion. The left and right

gas wavefunctions overlap, as do the raised and unraised weight states. However, the piston states

|Φ(Y )〉 〈Φ(Y ) | and |Φ(−Y )〉 〈Φ(−Y ) | are orthogonal. It is this that maintains the orthogonality

of the left and right subensembles, and ensures the evolution is unitary.

As the expansion progresses, the overlap between the left and right gas subensembles increases,

until the piston reaches the end of the box and is removed, at which point the overlap is complete.

The two, initially orthogonal, gas subensembles have been isothermally expanded into the same

density matrix. For the weights, the overlap between ρλ
W1(h(Y )) and ρλ

W1(0) decreases, but never

reaches zero (except in the limit where TG À TW ). Although the free energy from the expansion

of the gas is picked up by the weights, it is still the piston states that ensures that the final density

matrix has orthogonal subensembles:

1
2
ρλ

W1(hT )⊗ ρρ
W1(0)⊗ |φR〉 〈φR |+ 1

2
ρλ

W1(0)⊗ ρρ
W1(hT )⊗ |φL〉 〈φL | (8.2)

When calculating the free energy and entropies in Chapter 7, it was the orthogonality of the

piston states that allowed us to apply the mixing formulas. The entropy of mixing between the two

gas subensembles has been transferred to the piston states. The significance of the piston states

can be made clear by considering the density matrix:

1
2
ρλ

W1(hT )⊗ ρρ
W1(0) +

1
2
ρλ

W1(0)⊗ ρρ
W1(hT ) (8.3)

The correlated weight states in this matrix are not orthogonal, so this density matrix has

a lower entropy than the density matrix that includes the piston states. If it were not for the

orthogonality of the piston states, the entropy of the Szilard Engine would have been reduced at

this stage. Only in the limit of TG À TW do the weights states become orthogonal, and the entropy

of (8.3) becomes equal to (8.2). In this situation the different piston states can both be restored

to the center (by correlating them to the position of the weights), but this does not reduce the

entropy of the Engine as it only takes place where the transfer of heat is from the hotter to the

colder system.

For the lowering cycle, the stages described in Section 6.6 do not show correlations. The reason

for this is that we started the lowering cycle by assuming the piston is located on one particular

side. In general, a lowering cycle can start with the piston at either side of the Engine, and so will

have a density matrix of the form

pR |φR〉 〈φR | ⊗ ρλ
W1(hT )⊗ ρρ

W1(0) + pL |φL〉 〈φL | ⊗ ρλ
W1(0)⊗ ρρ

W1(hT )

with pR + pL = 1. This has an additional mixing entropy of −k (pL ln pL + pR ln pR), which has

a maximum value of k ln 2, when pL = 1
2 . Now we have a correlated states with mixing entropy

associated initially with the pistons.

The evolution following from this will be the reverse of the raising cycle, and will transfer the

entropy of mixing from the piston states, to the gas subensembles. The gas will be left in the state
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pLρλ
G6(0) + pRρρ

G6(0) just before the removal of the piston from the center of the box.

After the removal of the piston, the gas returns to the uniform distribution ρG0. This is an

irreversible change, and the entropy of the system increases by the difference between the original

entropy of mixing of the piston states, and k ln 2. In Section 7.3 then we have pL = 0 or 1 and

the maximum entropy increase of k ln 2 occurs. If pL = 1
2 , then no entropy increase occurs and we

have the exact reverse of the raising cycle1.

The essential point is that the correlation between the orthogonal piston and weight subensem-

bles is transferred to the orthogonal gas subensembles. This demonstrates the same features as

the raising cycle, which highlights the manner in which the Szilard engine is intended to work.

The gas ensemble initially ’occupies’ the entire box. When the partition is inserted, it is

divided into two orthogonal subensembles. The intention of the engine is to extract useful work

from allowing each of these subensembles to expand back to ’occupy’ the entire box again.

We have shown that this can be done, by inserting a freely moving piston in the center of the

box. The inclusion of the state of this piston is an essential part of the evolution of the system,

as the required evolution is not unitary unless the orthogonality of the piston states is taken into

account. This transfers the entropy of mixing from the gas subensembles to the piston and weight

subensembles. Now the same requirement of unitarity prevents the piston from being restored to

it’s original position, which, if successful would imply a reduction in the entropy of the system.

8.1.2 Maxwell’s Demons

It is the orthogonality of the pistons states that are essential to the operation of the Szilard Engine.

We will now show how this relates to the Maxwell’s Demon.

The original Maxwell’s Demon thought experiments did not involve an analysis of work or free

energy. Maxwell described two systems, a pressure demon and a temperature demon, using a trap

door which separates a gas into two portions. When an atom approaches, the demon opens or

closes the trapdoor, allowing the atom to pass or not. We will present a very simplified analysis

of the pressure demon, to illustrate it’s essential similarity to our analysis of the Szilard Engine.

In the case of the pressure demon, if an atom approaches from the left, it is allowed to pass,

while if it approaches from the right, it is reflected elastically. No work is performed upon the

system. We represent an atom on left by |L〉 and on the right by |R〉.
If U1 represents the unitary operator for the demon holding the trapdoor open and U2 the

unitary operator for the demon holding the trapdoor closed, we have

U1 |L〉 = |R〉
U2 |R〉 = |R〉

These cannot be combined into a single unitary operator. To operate the trapdoor the demon

must involve it’s own internal states, or some auxiliary system.
1The net change in entropy over the cycle will still be positive
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The complete specification of the unitary operators is

U1 = |L〉 〈R |+ |R〉 〈L |
U2 = |L〉 〈L |+ |R〉 〈R |

We now assume the demon has auxiliary states |π0〉 and |π1〉, and uses these auxiliary states to

produce a combined unitary operation. There is some flexibility in choosing this operator but this

is not important, so we choose the fairly simple form, assuming the demon initially in the state

|π0〉 of

Ua = |π1L〉 〈π0L |+ |π0R〉 〈π0R |
+ |π0L〉 〈π1L |+ |π1R〉 〈π1R |

Ub = |π1R〉 〈π1L |+ |π0R〉 〈π0R |
+ |π0L〉 〈π0L |+ |π1L〉 〈π1R |

= |π1〉 〈π1 |U1 + |π0〉 〈π0 |U2

The action of Ua represents the Demon measuring the location of the atom, and then Ub represents

the Demon holding the trapdoor open or shut.

The atom may initially be on either side, so is described by

1
2
|L〉 〈L |+ 1

2
|R〉 〈R |

After the operation of Ua, the demon and atom are in a correlated state

1
2
|Lπ1〉 〈Lπ1 |+ 1

2
|Rπ0〉 〈Rπ0 |

Under Ub, the atom then evolves into |R〉 〈R |, but leaves the demon in the state 1
2 |π0〉 〈π0 | +

1
2 |π1〉 〈π1 |. Clearly the entropy of the atom has decreased, but the entropy of the demon has

correspondingly increased2. The demon states play exactly the same role as the piston states in

the Popper-Szilard Engine. We will now consider the thermodynamics of this.

8.1.3 The Significance of Mixing

What we have seen above is that the problem involves separating an ensemble into subensembles.

By correlating these subensembles to an auxiliary system, such as a Demon or a piston, operations

can be performed upon the subensembles that cannot be performed upon the overall ensemble. In

other words, we are trying to reverse the mixing of the subensembles. We will now have to consider

the physical origin of the mixing entropy, and the role it plays. We will restrict the discussion to

the case where there are only two subensembles ρ1 and ρ2, and focus upon the problem of reversibly

extracting work from the system.
2If we now bring in a second atom in the state 1

2
|L〉 〈L | + 1

2
|R〉 〈R |, the demon fails to sort the atom at all.

Having picked up the mixing entropy of the atom, it is no longer able to function as intended.
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To understand the significance of this requires us to explain the physical origin of the mixing

relationships

Fi = F − kT ln pi

S =
∑

i

pi (Si − k ln pi)

where an equilibrium density matrix may be decomposed into orthogonal subensembles

ρ =
∑

i

piρi

ρiρj = (ρi)
2
δij

If we start with a system in the equilibrium state ρ = p1ρ1 + p2ρ2, we will be able to extract

work from the mean pressure exerted on some boundary parameter. This is represented by the free

energy F which is the work that can be isothermally extracted, when taking the density matrix ρ

to some reference state ρ0.

Let the free energy F1 represents the isothermal work extracted taking a density matrix ρ1

to the reference state ρ0. This is given by F1 = F − kT ln p1 > F . Similarly for ρ2 we have

F2 = F −kT ln p2 > F . In both these cases, the free energy is higher than is obtained by operating

directly upon the ensemble, by an amount −kT ln pi so the mean gain in free energy from operating

upon the subensembles rather than the ensemble is simply −kT
∑

pi ln pi. This is the free energy

that is lost due to the mixing.

In other words, by separating the ensemble into it’s orthogonal subensembles, we are attempting

to avoid the loss of free energy caused by the mixing. Although other versions of Maxwell’s demon

do not address free energy directly (eg. creating pressure or temperature gradients), they are

all illustrated by being connected to heat engines or turbines which extract work, so in one way

or another they are all implicitly concerned with increasing the free energy of an ensemble by

manipulating it’s subensembles.

We will now try to explain how mixing causes the free energy to be lost. This will be shown

to be a consequence of the unitarity of the evolution operators.

Perfect Isolation First we will consider the situation of perfect isolation. In this case there are

no transitions between eigenstates, and the evolution of a density matrix, initially ρ0(0), will be

described by

ρ0(t) = U(t)ρ0(0)Uy(t)

where U(t) is the solution to the operator Schrödinger equation.

Our first result to establish is that there is no operator that is capable of separately operating

upon ρ1 and ρ2 to take them into the reference state ρ0. This can be seen easily from the fact that

if we were to find an operator U1 such that

ρ0 = U1ρ1U
y
1
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it cannot be also true that

ρ0 = U1ρ2U
y
1

as this would mean

(ρ0)
2 = U1ρ1U

y
1U1ρ2U

y
1 = U1ρ1ρ2U

y
1 = 0

and a density matrix such as ρ0 cannot be nilpotent.

From this it follows that if we wish to perform an operation where each of the two subensembles

are taken to the same reference state, we must involve a second system.

If we take a second operation, U2, such that

ρ0 = U2ρ2U
y
2

and introduce an auxiliary system, with orthogonal states3 π1 and π0, initially in the state π0,

then we can form two unitary operators, containing the operations

Ua = |π1〉 〈π0 |P1 + |π0〉 〈π0 |P2

Ub = |π1〉 〈π1 |U1 + |π0〉 〈π0 |U2

where P1 and P2 are projectors onto the subspaces of ρ1 and ρ2 respectively.

The effect of Ua is to correlate the auxiliary system with the subensembles. Ub then acts as a

conditional unitary operator. If the auxiliary system is in π1, then it switches on the Hamiltonian

necessary to take ρ1 to ρ0, while if the auxiliary system is in state π2, the Hamiltonian for taking

ρ2 to ρ0 is switched on. This successfully takes each of the subensembles to the reference state,

extracting maximum work in the process, but leaves the auxiliary system in the state p1 |π1〉 〈π1 |+
p2 |π2〉 〈π2 |. The entropy of mixing has been transferred from the ensemble to the auxiliary. The

π1 and π2 are orthogonal, and so again there is no unitary operation that is capable of restoring

the auxiliary system to it’s initial state.

Contact with the environment The situation of perfect isolation, however, is too idealised.

In general, while the unitary operation is taking place, contact with an environment will cause

transitions between eigenstates. The evolution of the density matrix will not, in general, be

described by a unitary operation. We cannot assume that the final and initial density matrices

are unitarily equivalent, so the proof given above, based upon the preservation of inner products,

is no longer valid.

As an example, let us consider the discussion of the Szilard box with the partition raised, and

the atom confined to the left. The state is initially

|ψρ
l 〉 =

1
2

(|ψeven
l 〉+

∣∣ψodd
l

〉)

.
3We will always assume that eigenstates of the auxiliary systems are at the same energy.
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If the partition is removed, in perfect isolation, the free evolution of the gas leads to the state

1
2

(
e¡i

Eeven
l

t

h̄ |ψeven
l 〉+ e¡i

Eodd
l

t

h̄

∣∣ψodd
l

〉)

where the energies are now the non-degenerate energies of the unperturbed eigenstates. This

leads to a time dependant factor in the phase of the superposition. The state appears reasonably

uniformly spread most of the time, but when
(
Eeven

l − Eodd
l

)
t

h̄
= nπ

for integer n, the atom will be located on a well defined side of the box. If the piston is re-inserted

at this time, the atom will always be found on a specific side of the box.

If the atom had initially started confined to the right, it would evolve to

1
2

(
e¡i

Eeven
l

t

h̄ |ψeven
l 〉 − e¡i

Eodd
l

t

h̄

∣∣ψodd
l

〉)

This will be found on the opposite side of the box at these same well defined times. In fact, at all

intervening times, the two states are orthogonal. Although they are spatially overlapping most of

the time, in principle the interference terms maintain the distinguishability of the two states.

If we construct the density matrices ρλ
G2 and ρρ

G2 from the right and left wavefunctions, lowering

the partition causes these to evolve into states that are still orthogonal to each other. The initially

orthogonal subensembles (of gas on the left or gas on the right) remain orthogonal at all times.

If the box is in contact with an environment, however, decoherence effects destroy the super-

position between the even and odd wavefunctions. Both |ψρ
l 〉 and

∣∣ψλ
l

〉
will now evolve into the

density matrix
1
2

(|ψeven
l 〉 〈ψeven

l |+
∣∣ψodd

l

〉 〈
ψodd

l

∣∣)

As the orthogonality between the ρλ
G2 and ρρ

G2 states depends upon the coherent phase of the

superpositions, when there is decoherence the left and right subensembles evolve to the same

equilibrium ensemble ρG0. In this situation, the same unitary operation (lowering the partition)

leads to initially orthogonal subensembles evolving into the same density matrix.

Although we must describe the evolution of the system with unitary operators, contact with

the environment can allow non-unitary evolution of the system’s density matrix. We must now

analyse the effect of this upon the mixing relationship.

Isothermal We must take into account the non-unitarity of the evolution, due to interactions

with the environment, when considering how to extract the free energy. Our task is to see if the

initially orthogonal subensemble states can be taken into non-orthogonal states, using contact with

the heat bath, while extracting the free energy that is lost due to mixing.

We will consider the situation where the environment is a heat bath at temperature T . To

extract the optimum free energy F1, from subensemble ρ1, we need to apply a suitable time

dependant Hamiltonian (such as the one that leads to U1) that takes the subensemble to the
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reference state (at temperature T ). One of the properties of such a optimum path is that it is

thermodynamically reversible. The means that if we apply Uy
1 to the reference state, while in

contact with a heat bath at temperature T , we will obtain the original subensemble ρ1 (and will

have to perform F1 work upon the system).

If we now try to extract the free energy F2 from the subensemble ρ2, we clearly require a

different time dependant Hamiltonian as we need it to correspond to the adjoint of that unitary

operator Uy
2 which, when isothermally applied to the reference state, produces the subensemble

ρ2. This leaves us in the same situation as with perfect isolation - if we wish to combine the two

unitary operations so that the appropriate one is applied to the appropriate subensemble, we need

to include an auxiliary system. This auxiliary system correlates itself to the subensemble, and is

itself left in a higher entropy state.

It appears that if we wish to extract the −kT ln p free energy from the subensembles, we cannot

combine the operations into a single operator, but must employ an auxiliary. We know that there

is an operator that can take both the subensembles to the same state, when in contact with a heat

bath, but this operator loses the free energy of mixing. We shall refer to this as a ’dissipation’ of

the mixing free energy −kT
∑

p ln p.

Let us try and understand more clearly the underlying reason why the orthogonal subensembles

can be decoherently transformed into the same state using a single unitary operator, but if we wish

to extract the free energy rather than dissipate it, two different unitary operators are required. We

will consider the example of the Szilard box, with a partition raised, where ρ1 is the atom confined

to the left of the partition, ρ2 the atom confined to the right, and the reference state is the atom

unconfined with no partition.

When applying operator URI to remove the partition, the eigenstates deform continuously

between the states Ψeven
l and Ψodd

l , and the corresponding unperturbed Ψn states. If the atom

is initially confined to the left, the initial states are ΨL
j which are superpositions of Ψeven

j and

Ψodd
j . As the barrier is lowered, the initial states evolve into a superposition of the unperturbed

Ψ2j and Ψ2j¡1 states. The ΨR
j states, corresponding to an atom initially confined to the right of

the partition, will evolve into an orthogonal superposition of the same states.

The most important feature of this is that the states into which the ΨL
l evolve span only half

the Hilbert space - the ΨR
l evolve into states which span the other half. However, once the barrier

has been lowered, all the states are thermally accessible to the atom, through interactions with

the heat bath. The evolution given by URI does not cause the initially confined atom to occupy

the full space and become in the state ρG0. It is the ’free energy dissipating’ or decoherent contact

with the heat bath which allows the atom to expand to occupy the entire state space.

Now let us consider the situation where the atom is confined to the left, and we wish to extract

the free energy of the expansion to fill the entire box. Again, the atom starts in the ΨL
l states.

Now the evolution U1, however it is implemented, to extract the optimum work, must take the

atom into ρG0, occupying the complete set of the unperturbed Ψl states - which span the entire
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Hilbert space4.

Suppose the effect of U1 left some of the final Hilbert space unoccupied, but thermally accessible.

Then, decoherence from contact with the heat bath would lead to that portion of Hilbert space

becoming occupied, dissipating some free energy in the process. To extract maximum work, or

equivalently, to eliminate the dissipation of free energy, the operation of U1 must be a one-to-one

mapping of the ΨL
l Hilbert space onto the Ψl Hilbert space.

Now, the same must also be true for the optimum extraction, using U2, of free energy from

an atom initially confined on the right. However, this means that U1 and U2 are attempting to

map initially orthogonal sets of eigenstates ΨL
l and ΨR

l onto the same set of states Ψl. This is the

reason that U1 and U2 cannot be combined into a single operator, as such a mapping cannot be

unitary.

This significantly improves the result derived in the case of perfect isolation above. For perfect

isolation, we can rely upon the unitary equivalence of the transformed density matrices, and the

invariance of their inner product. This cannot be relied upon when there are interactions with an

environment. Instead, we have used the properties of the unitary operation, as a mapping upon

the space of states that the density matrix occupies.

If we were to use a U1 operator that mapped the ΨL
l only onto some subset of the Ψl , then

that would leave the complementary subset available for some of the ΨR
l under U2. This would

allow some portion of U1 and U2 to be combined. However, the atom initially confined to the left,

would come to occupy the entire Hilbert space, including that portion of the Hilbert space left

unoccupied by U1 through decoherent contact with the heat bath. The same would take place

for the atom initially confined to the right. In other words, the extent to which the U1 and U2

operators may be combined is directly linked to the amount of free energy that is dissipated rather

than extracted. The operator URI maps the ΨL
l and ΨR

l onto entirely orthogonal sets of states,

but which are accessible to the same set of states by a decoherent process. This allows a single

operator to take the left and right density matrices into occupying the whole space, but at the cost

of dissipating the entire free energy of mixing.

The conclusion of this is that it is the requirement of unitarity that prevents us from extract-

ing the optimum free energy from the subensembles. A unitary operator that acts upon both

subensembles will fall short of optimum by at least that amount of free energy given by the mixing

formula. We can use a different unitary operator upon each subensemble only if we correlate an

auxiliary system to the subensembles. However, the consequence is that the auxiliary system picks

up precisely that entropy of mixing that compensates for the increase in work we are now able to

extract from the subensembles.
4This difference between U1 and URI , mapping the same initial states to all, and one-half of the final Hilbert

space, respectively, is possible because there is a countable infinity of states available.
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8.1.4 Generalised Demon

We have argued that it is the relationship between the mixing and correlations that both gives rise

to, and resolves, the Maxwell’s Demon problem. Let us examine this in more detail, and greater

generality. Our intention here is to highlight the role of the unitary operations upon the subspaces

and the effect of introducing an auxiliary system. Our argument is that the mixing entropy is

a consequence of unitarity. Reversing this mixing, separating the ensemble into subensembles,

can only be achieved by introducing an auxiliary system. However, any gain in the free energy

or entropy due to this separation is offset by at least as large an increase in the entropy of the

auxiliary system.

We assume the initial Hilbert space is formed from two orthogonal subspaces Γ = Γ1 ⊕ Γ2.

The initial, equilibrium ensemble may be written in terms of the orthogonal subensembles ρ =

p1ρ1 + p2ρ2. The subensemble ρ1 initially occupies5 the subspace Γ1 of the Hilbert space and

ρ2 occupies the orthogonal subspace Γ2. They occur with probability p1 and p2 in the initial

equilibrium ensemble, and p1 + p2 = 1. The unitary operator U1 maps Γ1 to some subspace Γ0
1

of Γ and U2 maps Γ2 to Γ0
2. We will assume that contact with a thermal heat bath will cause an

ensemble initially localised in Γ0
1 to decoherently spread throughout Γ, returning the system to the

initial equilibrium ensemble ρ, and similarly for Γ0
2.

The probability of an equilibrium system ρ being spontaneously found in the Γ0
1 subspace is p0

1

and the probability of the system being similarly in Γ0
2 is p0

2. As we do not assume that Γ0
1 and Γ0

2

are orthogonal subspaces, there is no restriction on p0
1 + p0

2.

The free energy of the subensembles can be calculated from their probabilities, and the free

energy of the initial ensemble F

F1 = F − kT ln p1

F 0
1 = F − kT ln p0

1

F2 = F − kT ln p2

F 0
2 = F − kT ln p0

2

We now wish to see how we can extract the extra free energy from the subensembles.

In p1 proportion of the cases, the system is in subensemble ρ1. Under the operation of U1,

it isothermally expands to occupy Γ0
1, becoming ρ0

1. This extracts kT ln (p0
1/p1) free energy. The

density matrix ρ0
1 then expands freely into ρ, and −kT ln (p0

1) notional free energy is dissipated.

In p2 cases, the initial subensemble is ρ2. Isothermally expanding this with the operation of

U2 extracts kT ln (p0
2/p2) and then dissipates the notional free energy −kT ln (p0

2).

The mean free energy gained is

∆FG

kT
= p1 ln

(
p0
1

p1

)
+ p2 ln

(
p0
2

p2

)

5When we say a density matrix ’occupies’ a subspace, we mean that those eigenvectors of the density matrix

which have non-zero eigenvalues, form a basis for the subspace.
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and the subensemble free energy which may be regarded as dissipated is

∆FD

kT
= −p1 ln p0

1 − p2 ln p0
2 ≥ 0

giving
∆FG + ∆FD

kT
= −p1 ln p1 − p2 ln p2 ≥ 0

which is equal to the entropy of mixing of the two subensembles. As the free energy dissipated is

never negative, it is immediately apparent that the free energy gained cannot exceed the entropy

of mixing.

When we wish to distinguish between the actual free energy of an ensemble, F , and the mean

free energy of it’s subensembles
∑

piFi we shall refer to the additional free energy −kT
∑

pi ln pi

of the subensembles as a ’notional’ free energy. This is the free energy we would like to be able to

extract by splitting the ensemble into subensembles. The sense in which this ’notional’ free energy

is ’dissipated’ is simply that we have failed to extract it. This is not the same as the situation

where the initial matrix is actually ρ1 say, and it is allowed to expand freely to ρ in which case an

actual, rather than notional, free energy −kT ln p1 would have been lost.

No overlap in final subspaces In the case where Γ0
1 and Γ0

2 are complementary6 orthogonal

subspaces, then U1 and U2 may be combined into a single unitary operator U3 and p0
1 + p0

2 = 1.

This yields a value of

∆FG

kT
= p1 ln

(
p0
1

p1

)
+ (1− p1) ln

(
1− p0

1

1− p1

)
≤ 0

with equality occurring only for p1 = p0
1.

To understand this we must consider what is happening to the two respective subensembles.

As p1 + p2 = p0
1 + p0

2 any ’expansion’ of one subensemble is paid for by a ’compression’ of the

other. What the relationship above shows, is that when we divide an equilibrium ensemble into

subensembles, the work required to perform the compression on one will always outweigh the work

gained from the expansion on the other.

It is important to remember the values of p0
1 and p0

2 are the equilibrium probabilities that

initial density matrix would have spontaneously been found in Γ0
1 or Γ0

2, while p1 and p2 are the

probabilities of spontaneously finding the system in a subensemble that is isothermally moved into

those subspaces. Unless these probabilities are the same, the final density matrix will not be in

equilibrium. This result tells us that any attempt to rearrange an equilibrium distribution into a

non-equilibrium distribution requires work.

For the case of the Szilard Box, we divide the gas ensemble ρG0 into the two subensembles ρλ
G2

and ρρ
G2 by inserting a partition. This gives us p1 = p2 = 1

2 . If we simply remove the piston,

we ’dissipate’ the notional kT ln 2 energy we could have extracted from expanding either of the
6If we were to use subensembles which were orthogonal, but not complementary, then p′1 + p′2 < 1. The only

effect of this would be to reduce the amount of free energy that could be extracted.
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subensembles, as we do not have an operator that, acting upon the gas alone, can extract this as

work.

Complete overlap in final subspaces Now let us consider the case where Γ0
1 and Γ0

2 have an

overlapping subspace Γ0
12. We are not restricted to p0

1 + p0
2 = 1 anymore, but we can no longer

combine U1 and U2 into a single operator, so must employ an auxiliary system. The increase in

entropy of the auxiliary system is

∆Saux

k
= −p1 ln p1 − p2 ln p2

which is the same as the entropy of mixing of the subensembles, and equal to the total free energy

that is available to extraction and dissipation.

As we have no restrictions upon p0
1 and p0

2, we obtain minimum ’dissipation’, and extract

maximum free energy, by setting Γ0
1 = Γ0

2 = Γ0
12 = Γ1 ⊕ Γ2 so that p0

1 = p0
2 = 1. This allows us

to extract the free energy −kT ln p1 with probability p1 and −kT ln p2 with probability p2. Each

subensemble has been allowed to expand to fill the entire space, extracting maximum free energy.

However, the auxiliary system has had an equivalent increase in entropy.

This corresponds to the isothermal expansion of the Szilard box, where the piston plays the

role of the auxiliary system. The free energy is extracted from each of the gas subensembles, but

the piston is left in a mixture of states.

Partial overlap in final subspaces We might now ask that if Γ0
1 and Γ0

2 are not completely

overlapping but not completely orthogonal, is there some way we can avoid the auxiliary system

picking up the entire entropy of mixing. If we assume that p2 ≤ p1, without loss of generality, we

start by separating Γ0
2 into orthogonal subspaces Γ0

12 and Γ0
2a, where Γ0

2a does not overlap with Γ0
1.

We now need to separate the initial density matrix ρ2 into the orthogonal subensembles ρ2a

and ρ2b, where the subspace containing ρ2a is mapped onto Γ0
2a and ρ2b onto Γ0

12 by U2. The

probabilities of these subensembles will be p2a and p2b and the probabilities associated with Γ0
12

and Γ0
2a are p0

12 and p0
2a = p0

2 − p0
12. Finally, we split U2 into an operator U2a acting upon ρ2a and

an operator U2b acting on ρ2b.

We are now able to combine U1 with U2a, as Γ0
2a and Γ0

1 do not overlap, into a single operator

UA = U1 ⊗ U2a. This allows us to reformulate the problem as involving the two complementary

orthogonal subspaces ΓA and ΓB with

ρA =
p1ρ1 + p2aρ2a

p1 + p2a

ρB = ρ2b

ΓA = Γ1 ⊕ Γ2a

pA = p1 + p2a

ΓB = Γ2b

pB = p2b
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Γ0
A = Γ0

1 ⊕ Γ0
2a

p0
A = p0

1 + p0
2 − p0

12

Γ0
B = Γ0

12

p0
B = p0

12

Now the final entropy of the auxiliary system

∆Saux

k
= −pA ln pA − pB ln pB

is lower than the increase that would have occurred based upon p1 and p2, so we have reduced it’s

increase in entropy. However, now we still have a dissipation of

∆FD

kT
= −pA ln p0

A − pB ln p0
B ≥ 0

notional free energy and an extraction of only

∆FG

kT
= pA ln

(
p0

A

pA

)
+ pB ln

(
p0

B

pB

)

so the gain in free energy is still less than the equivalent increase in entropy of the auxiliary.

In the special case where p2b = p0
12 = 0, there is no overlap between Γ0

1 and Γ0
2



It is important to note that the correlation between the auxiliary and the subensembles must

be carefully controlled. If we have complete overlap in the final subspaces, then the operator U1,

which maps Γ1 onto Γ, will map Γ2 onto a space which occurs with p = 0. If the auxiliary becomes

correlated to the wrong subensemble, the conditional operation may attempt to apply U1 to ρ2.

Instead of extracting free energy, this will attempt to compress the system into a zero volume. This

would require an infinite amount of work. Obviously this is not physically possible, and so would

lead to the engine breaking down in some way. If there is any possibility of the auxiliary being in

the wrong state, therefore, this imposes an additional constraint upon the unitary operations that

may be conditionalised upon it. In the Szilard Engine, for example, this leads to the restriction

on the four subspaces of the piston and weights, for URES in Equation 5.25.

8.1.5 Conclusion

We believe this has brought out one of the essential features of the general Maxwell’s demon

problem, and shown why it does not constitute a problem for the second law of thermodynamics.

In essence, the problem arises from the increase in entropy that comes about when subensembles

are mixed. The demon Maxwell proposed was able to examine each atom, and sort the ensemble

into it’s subensembles. This reverses the entropy increase due to the mixing, in apparent violation

of the second law of thermodynamics.

However, we have seen that this sorting cannot be implemented by any unitary operation acting

only upon the space of the gas7. Instead, it must include an auxiliary system. This auxiliary system

increases in entropy to match the decrease in entropy of the gas.

When we consider the change in free energy from mixing, we find the same problem. To

extract the free energy from each subensemble, we must employ an auxiliary system, whose entropy

increases in direct relation to the gain in free energy. For the Szilard Engine, this auxiliary system

is clearly the piston system.

This completes the first stage of the resolution to the Maxwell’s Demon problem. The ’mea-

surement’ of the system by the ’Demon’ (or equivalently, the correlation of the auxiliary to the

system) does not decrease entropy, as there is a compensating increase in entropy of the auxiliary

system.

However, this does not constitute the whole resolution. In the Popper version of Szilard’s

Engine, there are also weights whose state is imperfectly correlated to the auxiliary state. This

suggests that it is possible to imperfectly reset the auxiliary. Although we have shown that, in

the case of the Popper-Szilard Engine, this resetting cannot succeed, we need to understand why

such a resetting mechanism cannot succeed in general, and how this resetting relates to the kT ln 2

energy that Landauer’s Principle suggests is necessary to reset the state of the auxiliary.
7Maxwell argued that his demon proves the second law of thermodynamics cannot be derived from Hamiltonian

mechanics. Clearly this is mistaken. The demon Maxwell envisages is able to violate the second law only because

it is a non-Hamiltonian system.
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8.2 Restoring the Auxiliary

We now must consider means by which the auxiliary system may be restored to it’s initial state.

This would allow the system to continue extracting energy in cyclic process. For the Popper-Szilard

Engine this involves attempting to reset the piston state by correlating it to the location of the

two weights.

The essential point to note here is that it was necessary to include the quantum description of

the weights as a thermodynamic system at some temperature TW , rather than simply as a ’work

reservoir’. Although we noted certain properties of the thermodynamic weight8, in Sections 6.3

and 7.1 that make the weight in a gravitational field a very convenient system to use as a ’work

reservoir’, our treatment of it was as an isothermal compression.

In the previous Section we showed how the correlation of an auxiliary could be used to extract

work from the mixing free energy of the system. To complete the analysis we must also take into

account the effect of this work on a second system, and the possible correlations this second system

can have with the auxiliary.

First we will derive a general relation, which we will refer to as the ’fluctuation probability

relation’, which characterises the effect upon one system that can be achieved from a thermal

fluctuation in a second. We will then apply this relation to the generalisation of the Popper-

Szilard Engine. The fluctuation probability relation will be shown to govern the long term energy

flows in such a way as to ensure that any attempt to reset the Engine must fail in exactly such a

way as to ensure that the mean flow of energy is always in an entropy increasing direction. We will

also show how, by performing work upon the system, the Engine can be made to operate without

error, but only at the efficiency of the Carnot Cycle.

8.2.1 Fluctuation Probability Relationship

We will now calculate the key relationship governing the work that may be extracted from a

thermal fluctuation. We must first discuss what we mean by a fluctuation within the context of

the Gibbs ensemble. Generally, the equilibrium density matrix

ρ =
e¡ H

kT

Tr
[
e¡ H

kT

]

may be interpreted as the system being in one of the eigenstates of the Hamiltonian with probability

pi =
e¡ Ei

kT

Tr
[
e¡ H

kT

]

and that contact with a heat bath at temperature T completely randomises the state of the system,

on a timescale of order τ , the thermal relaxation time. The system jumps randomly between the

available states. These are the thermal ’fluctuations’.
8The equivalence of perfect isolation, essential isolation and isothermal lifting, and also the constancy of entropy

as it is raised
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If we had a macroscopic system, we could partition the Hilbert space into macroscopically

distinct subspaces. From the perspective of the Gibbs ensemble, this is the separation of the

density matrix into subensembles

ρ =
∑
α

pαρα

where ρα is the equilibrium density matrix occupying the subspace and pα is the probability that

the system state is in the subspace.

For macroscopic systems, the majority of states will be in one large subspace, which will have

approximately the same entropy as the ensemble. However, there will be some states in small

subspaces that correspond to situations with lower entropy, such as the atoms of a macroscopic

gas all located in one half of a room. At any point there will be a small probability that the

thermal fluctuations will lead to such a subspace being occupied. As we have seen in Equation 7.7,

these fluctuations will have a free energy given by

Fi = F − kT ln pi

If the fluctuation is very rare (pi ¿ 1) the increase in free energy will be large in comparison to

macroscopic quantities.

For microscopic systems, such as the single atom Szilard Engine, the ensemble free energy may

well be of the order of kT . If this is the case, reasonably common fluctuations may show an increase

in free energy comparable to the free energy of the ensemble itself. We are now going to consider

trying to harness this gain in free energy, and put it to use on some other system, such as by lifting

a weight.

If we find a system at temperature T1 in a subensemble which spontaneously occurs with

probability p1, we can extract −kT1 ln p1 work from allowing the subensemble to expand back to

the equilibrium. We wish to use this work to perform some action upon a second system. If treat

this as storing the energy in a work reservoir, such as a weight, we have noted this is exactly

equivalent to isothermally compressing the second system (lifting the weight).

The free energy F 0
2 of the compressed state of the second system will differ from the free energy

F2 of it’s original state by

F 0
2 = F2 − kT1 ln p1

Now, we know that the second system will spontaneously occur in a fluctuation state with free

energy F 0
2 with a probability p2, where

F 0
2 = F2 − kT2 ln p2

and T2 is the temperature of the second system.
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The Fluctuation Probability Relation

Equating these we reach the essential result9 of this section, the fluctuation probability relation:

(p1)T1 = (p2)T2 (8.4)

We are now going to examine a key consequence of this result:

p1 > p2

only if

T1 > T2

The probability of the second system to be spontaneously found in the desired state is less

than the probability of the original fluctuation occurring, only if the second system is at a lower

temperature.

Let us consider what this means. We have some system, at temperature T2, and we wish to

perform some action upon it, that requires work. We wish to obtain this work from a thermal

fluctuation in another system, at temperature T1.

Now, if T1 > T2, we could simply connect a heat engine between the two and reliably compress

the second system without having to bother with identifying what fluctuations were occurring in

system one (remember - although we are not considering it here, we will have to introduce an

auxiliary system to determine which fluctuation has taken place in system one, and this auxiliary

suffers an increase in entropy). Unfortunately, if system one is not at a higher temperature than

system two, then the probability of system two spontaneously being found in the desired state is

at least as high as the probability that the fluctuation occurs in system one.

The most effective way of obtaining a desired result from thermal fluctuations is to wait for

the fluctuation to occur in the system of interest, rather than in any other system. Other systems

will only give a higher probability of being able to achieve the desired result if they are at a higher

temperature than the system of interest, and so can achieve the result more reliably by more

conventional methods, and without involving auxiliaries. So the most effective means of boiling

a kettle by thermal fluctuations is to unplug it and wait for it to spontaneously boil. This is an

important result, which is perhaps not well appreciated. In [Cav90], for example, it is suggested

that it may be possible to build a demon capable of

”violating” the second law by waiting for rare thermal fluctuations

while from the opposite point of view in [EN99] it is argued

9For the Popper-Szilard Engine, this gives us P1 =
(

1
2

)(TG/TW )
, which we saw in Chapter 6 was the key

relationship in the failure of the Engine.
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the result assures us that over the longer term, no . . . demon can exploit this fluctuation.

But it can make no such assurance for the shorter term. Short term and correspondingly

improbable violations of the Second Law remain.

The result we have obtained here suggests that there is nothing to be gained even from waiting

for such improbable fluctuations to occur - as any objective we could achieve by exploiting such a

rare fluctuation would be more likely to occur spontaneously than the fluctuation itself!

8.2.2 Imperfect Resetting

We will now combine the results just obtained, with those of Section 8.1. This will demonstrate

the significance of the fluctuation probability relationship, completing our understanding of why

the Popper-Szilard Engine must fail.

Let us recall some of the key features of the resetting of the piston in Chapter 5 and 6. There

are two weights, but only one is raised, depending upon which side of the piston that the gas is

initially located. This leaves a correlation between the position of the raised and unraised weights

and the position of the piston. We attempted to make use of this correlation to reset the piston,

but found that the thermal state of the weights themselves defeated this attempt. The result was

that a mean flow of heat would occur only in the direction of hot to cold.

When work was extracted from the expansion of the subensemble it was assumed that this

was simply absorbed by a suitable work reservoir, such as a raised weight. Note, however, that

this raising of a weight can equally well be regarded as the isothermal compression of the weight

system, once we take into account the fact that the weight must itself be at some temperature.

Having noted that the raising of the weight may be regarded as an isothermal compression, we see

that the fluctuation relation above applies and

(PW )TW = (PG)TG

For the Popper-Szilard Engine, PW = P1 and PG = 1
2 . This leads directly to the relationship in

Equation 6.12

P1 =
(

1
2

) TG
TW

We saw in Section 6.7 that this equation plays the key role in ensuring that the mean flow of

energy in the Popper-Szilard Engine is in an entropy increasing direction, regardless of the choice

of TW and TG.

We must now try to understand how this relationship enters into the attempt to reset a general

Maxwell Demon. The key is the additional feature that the arrangement of the weights makes

to the standard Szilard Engine. This feature is that the work extracted from the gas is used

to compress the weights in a different manner, depending upon which subensemble of the gas is

selected. A different weight is lifted, depending upon which side of the piston the one-atom gas is

located. This produces the correlation between weights and piston states at the end of the raising
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cycle, and it is this correlation that enables an imperfect resetting to be attempted. We need to

understand how the relationship between the fluctuation probabilities ensures that this correlation

is just sufficiently imperfect to prevent a mean flow of energy from the colder to the hotter heat

bath.

To do this we must add a second system, at a second temperature, to the analysis of Section

8.1. When the auxiliary draws energy from the expansion of the subensembles of the first system,

it uses it to compress the second system in such a way that there is a correlation between the final

state of the second system and the final state of the auxiliary. This correlation will be used to

reset the state of the auxiliary, in an attempt to complete the engine cycle.

If the first system is at a higher temperature, we will see the auxiliary can be reset by a

correlation to the compression of the second system, allowing the engine cycle to continue. However,

this is a flow of energy from a hotter to colder heat bath, so is in an entropy increasing direction.

When the transfer of energy is in an anti-entropic direction, the correlation between the second

system and the auxiliary will be shown to be imperfect. This leaves a mixture, whose entropy offsets

the transfer of energy between the heat baths. If we attempt to reset the auxiliary imperfectly, the

consequences of the resetting failing are determined by the unitarity of the evolution operators. It

is shown that this leads inevitably to a reversal of the direction of operation of the engine.

We will calculate general expressions for the mean number of cycles the engine spends in each

direction, and the mean energy transferred between the heat baths per cycle. This will allow us

to show, quite generally, that the mean flow of energy will always be in an entropy increasing

direction.

Expansion and Compression

We start with the system from which we wish to extract free energy. Assuming this system to be

in thermal equilibrium at some temperature TG, it’s density matrix is separated into orthogonal

subensembles

ρG = pAρGA + pBρGB

which have free energies which differ from the ensemble free energy by kTG ln pA and kTG ln pB .

We will not be assuming that the two subensembles occur with equal probability. This differs from

the Szilard Engine, but is necessary to ensure the generality of the results.

To extract the maximum amount of free energy, we need to expand each subensemble to occupy

the entire space, isothermally, leaving it in the state ρG. We use the energy extracted from this

to compress a second system, at a temperature TW (if pA 6= pB then this second system will be

compressed by different amounts). If the equilibrium density matrix of the second system is ρW ,

then ρWA and ρWB will represent the density matrices it is isothermally compressed into by ρGA

and ρGB , respectively. From the fluctuation probability relationship, the ρWA and ρWB density

matrices would occurspontaneously in ρW with probabilities pα = (pA)τ and pβ = (pB)τ where
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τ = TG/TW . We may write the initial density matrix of the second system in two different ways:

ρW = pαρWA + (1− pα)ρWA

ρW = pβρWB + (1− pβ)ρWB

As shown in Section 8.1 above, we must also employ an auxiliary system, which is initially in

a state |π0〉 〈π0 |. This system is required as the initially orthogonal states ρGA and ρGB cannot

be mapped to the same space ρG, while extracting free energy. We cannot use the second system

as the auxiliary, as we do not yet know if the states ρWA and ρWB can be made orthogonal. It

is also helpful to regard the auxiliary as representing the state of the pistons, pulleys, and other

mechanisms (such as demons and memory registers, if they are considered necessary) by which the

subensembles of the first system are selected, and used to compress the second system.

The initial evolution of the system is from

ρ1 = {pAρGA + pBρGB} ⊗ ρW ⊗ |π0〉 〈π0 |

to

ρ2 = ρG ⊗ {pAρWA ⊗ |πA〉 〈πA |+ pBρWB ⊗ |πB〉 〈πB |}

through intermediate stages

ρ0
1 = pAρGA(Y )ρWA(Y ) |πA(Y )〉 〈πA(Y ) |+ pBρGB(Y )ρWB(Y )⊗ |πB(Y )〉 〈πB(Y ) |

where Y is a parameter varying from 0 to 1, and

|πA(0)〉 〈πA(0) | = |πB(0)〉 〈πB(0) | = |π0〉 〈π0 |
|πA(1)〉 〈πA(1) | = |πA〉 〈πA |
|πB(1)〉 〈πB(1) | = |πB〉 〈πB |

ρGA(1) = ρGB(1) = ρG

ρGA(0) = ρGA

ρGB(0) = ρGB

ρWA(0) = ρWB(0) = ρW

ρWA(1) = ρWA

ρWB(1) = ρWB

In the process of this evolution, either −kTG ln pA or −kTG ln pB energy is drawn from a heat bath

at TG.

The Hilbert space ΓG of the first system can be partitioned into complementary subspaces as

ΓG = ΓGA(Y )⊕ ΓGA(Y )

= ΓGB(Y )⊕ ΓGB(Y )

where ΓGA(Y ) is the space occupied by the density matrix ρGA(Y ) etc.
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The Hilbert space ΓW of the second system has a more complicated partition. Let ΓWA(Y ) be

the subspace occupied by the density matrix ρWA(Y ), ΓWB(Y ) the subspace occupied by ρWB(Y )

and ΓWAB(Y ) is the subspace of the overlap between these two, then

ΓW = Γ0
WA(Y )⊕ Γ0

WB(Y )⊕ ΓWAB(Y )⊕ ΓWAB(Y )

where

ΓWA(Y ) = Γ0
WA(Y )⊕ ΓWAB(Y )

ΓWB(Y ) = Γ0
WB(Y )⊕ ΓWAB(Y )

while ΓWAB (Y ) is the space occupied by neither density matrix. The complementary subspaces

are

ΓWA(Y ) = Γ0
WB(Y )⊕ ΓWAB(Y )

ΓWB(Y ) = Γ0
WA(Y )⊕ ΓWAB(Y )

When Y = 1 we will simply refer to ΓWA, Γ0
WA etc. Projectors onto the subspaces are denoted by

PWA, PGA and so forth.

To ensure the isothermal expansion is optimal, the systems have internal Hamiltonians condi-

tional upon discrete Yn states of the auxiliary system

HG =
∑

n

|πA(Yn)〉 〈πA(Yn) |{HGA(Yn) + HGA(Yn)
}

+ |πB(Yn)〉 〈πB(Yn) |{HGB(Yn) + HGB(Yn)
}

HW =
∑

n

|πA(Yn)〉 〈πA(Yn) |{HWA(Yn) + HWA(Yn)
}

+ |πB(Yn)〉 〈πB(Yn) |{HWB(Yn) + HWB(Yn)
}

where HWA(Yn) represents the Hamiltonian for the subspace ΓWA (complementary to the subspace

occupied by ρWA (Y ) ) and so on. When the auxiliary is in the state |πA(Yn)〉 〈πA(Yn) |, then

transitions between states in HGA (Yn) and states in HGA (Yn) are forbidden, and similarly for

HWA (Y ), HGB (Y ) and HWB (Y ). As compression and expansion takes place isothermally, the

subensembles are equilibrium density matrices for their respective subspaces.

Perfect Correlation

If TG ≥ TW then

pα + pβ ≤ 1

This means that ΓWA and ΓWB can be non-overlapping, so that ΓWAB = 0, and the density

matrices ρWA and ρWB can be orthogonal.

If we use a reset operation which includes

Ur1 = |π0〉 〈πA |PWA + |π0〉 〈πB |PWB + . . .
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where PWA is the projector onto ΓWA, and PWB onto ΓWB , then we can reset the auxiliary state

to |π0〉 〈π0 | and begin a new cycle, with perfect accuracy.

Restoring the auxiliary will make the second system internal Hamiltonian HW (0), which has

the equilibrium density matrix ρW . This leads to a dissipation of the notional free energy,

−kTW ln pα = −kTG ln pA from ρWA, with probability pA, and dissipation of −kTW ln pβ =

−kTG ln pB from ρWB with probability pB . The mean dissipation of notional free energy is then

Q = −kTG(pA ln pA + pB ln pB)

which equals the heat drawn from the TG heat bath. In other words, a quantity of heat Q can be

reliably and continuously drawn from one heat bath at TG and deposited at a colder heat bath at

TW . This simply represents a flow of heat from the hotter to the colder heat bath, and so presents

no particular problem for thermodynamics.

Imperfect Correlation

We now turn to the more interesting case, where the second system, which is initially receiving

energy, is at a higher temperature than the first system, TW > TG, and so

pα + pβ > 1

In this case the subspace occupied by ρWA and that occupied by ρWB will be overlapping. The

projectors PWA and PWB in Ur1 will not be orthogonal so the operation Ur1 is no longer unitary.

To reduce the overlap, ρWA and ρWB should leave no portion of the Hilbert space unoccupied,

so that ΓWAB = 0 and

ΓW = Γ0
WA ⊕ Γ0

WB ⊕ ΓWAB

The probabilities of an equilibrium density matrix ρW being found in these subspaces are p0
α, p0

β

and pαβ , with p0
α + p0

β + pαβ = 1, so that

ρW = p0
αρ0

WA + p0
βρ0

WB + pαβρWAB

ρWA =
(

1− pαβ

pα

)
ρ0

WA +
(

pαβ

pα

)
ρWAB

ρWB =
(

1− pαβ

pβ

)
ρ0

WB +
(

pαβ

pβ

)
ρWAB

Using τ = TG/TW , the probabilities are related by

pα = (pA)τ

pβ = (pB)τ

pαβ = pα + pβ − 1

p0
α = pα − pαβ = 1− pβ

p0
β = pβ − pαβ = 1− pα
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Now, if the second system is located in either Γ0
WA or Γ0

WB , then there is a correlation between

that system and the auxiliary system. The auxiliary system may be restored to it’s initial state

|π0〉 〈π0 |, by a correlated unitary operation.

However, if the second system is located in ΓWAB , the auxiliary may be in either position, and

there is no correlation. The resetting is now not possible. This is equivalent to the situation in the

Popper-Szilard Engine when both weights are located above the shelf height.

As we can only unambiguously identify the state of the auxiliary from the state of the second

system when the second system is located in a non-overlapping portion of the Hilbert space, we

choose to reset the auxiliary when the second system is in Γ0
WA or Γ0

WB , but perform no resetting

when the second system is in ΓWAB . The conditional unitary operation for this is

Ur2 = P 0
WAURA + P 0

WBURB + PWABUAB

where P 0
WA etc. are projection operators onto the relevant subspace of the second system, and the

URA are unitary operators 10 on the auxiliary space of the form

URA = |π0〉 〈πA |+ |πA〉 〈π0 |+ |πB〉 〈πB |
URB = |π0〉 〈πB |+ |πB〉 〈π0 |+ |πA〉 〈πA |
UAB = |π0〉 〈π0 |+ |πA〉 〈πA |+ |πB〉 〈πB |

When the second system can be reliably correlated to the state of the auxiliary, these opera-

tors will restore the auxiliary to its initial state. Following this, the notional free energy of the

subensemble is dissipated, and a net transfer of heat from the TG to the TW heat bath has taken

place. However, in those cases where the second system is found in ΓWAB , the system has not

been restored to it’s initial condition.

Raising Cycle

We can summarise the evolution so far, which we shall call the ’raising cycle’ as it corresponds to

the raising cycle of the Szilard Engine:

ρ1 = ρGΠ0ρW = {pAρGA + pBρGB}Π0ρW

ρ2 = pAρGΠAρWA + pBρGΠBρWB

= pAρGΠA

{(
1− pαβ

pα

)
ρ0

WA +
(

pαβ

pα

)
ρWAB

}

+pBρGΠB

{(
1− pαβ

pβ

)
ρ0

WB +
(

pαβ

pβ

)
ρWAB

}

ρ3 = ρGΠ0

{
pA

(
1− pαβ

pα

)
ρ0

WA + pB

(
1− pαβ

pβ

)
ρ0

WB

}

+ρG

{
pA

pαβ

pα
ΠA + pB

pαβ

pβ
ΠB

}
ρWAB

10Similar to the URES in Section 5.5 there is some flexibility in the choice of URA, URB , and UAB , so the ones

chosen here are not the only ones possible. However, they are the simplest choice, and a more complicated expression

would not essentially affect the outcome.
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ρ4 =
{

pA

(
1− pαβ

pα

)
+ pB

(
1− pαβ

pβ

)}
ρGΠ0ρW

+ρG

{
pA

pαβ

pα
ΠAρWA + pB

pαβ

pβ
ΠBρWB

}

The initial density matrix is ρ1, in equilibrium. The first stage correlates the auxiliary to the

subensembles of system one, extracts free energy from their conditional expansion, and uses the

same free energy to compress the second system. However, the compression of the second system

is also conditional upon the auxiliary, so that at the end of the expansion-compression stage the

auxiliary and the second system are correlated, in density matrix ρ2. An amount of heat equal to

Q = −kTG (pA ln pA + pB ln pB) has been drawn from the TG heat bath, and used to compress the

second system.

The next stage uses the operator Ur2. This utilises the correlation between the auxiliary and

the second system to restore the auxiliary to it’s initial state. When the second system is located

in the ΓWAB subspace, however, the imperfect correlation does not allow the auxiliary to be reset.

The final state of the system is ρ3.

Finally, the contact with the TW heat bath causes the second system subensembles to thermally

expand throughout their accessible Hilbert space, leading to ρ4.

With a probability given by

pC =
{

pA

(
1− pαβ

pα

)
+ pB

(
1− pαβ

pβ

)}

the system will be ready to start another raising cycle. However, in the final line of ρ4 we find

that the system has a probability of not being restored, with probability

pR = pαβ

(
pA

pα
+

pB

pβ

)

Lowering Cycle

We now need to consider what must happen to the unrestored system at the start of a new cycle.

We must be very careful when doing this. As noted towards the end of Section 8.1, if the auxiliary

is in the wrong state, the expansion/compression unitary operation may attempt to compress a

density matrix into a zero volume. In such situations the operation of the engine would break

down. Avoiding such situations occurring constrains the form of the operation upon the reversed

cycle. We must always be sure that the energy extracted from one system is equal to the energy

added to the other.

The conditional internal Hamiltonians HG and HW shows that the states consistent with the

different positions of the auxiliary are

ρGAΠ0ρW ρGBΠ0ρW

ρGΠAρWA ρGΠBρWB

ρGΠAρWA ρGΠBρWB
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The expansion/compression operation must map the space of ρGAΠ0ρW to ρGΠAρWA and ρGBΠ0ρW

to ρGΠBρWB . The states ρGΠAρWA and ρGΠAρWB are inaccessible, and would lead to a break-

down of the engine, should they occur.

The unitary operation for the expansion and compression phase must therefore map the space

ρGΠAρWA onto ρGAΠ0ρW and ρGΠBρWB onto ρGBΠ0ρW , and then allow ρGA and ρGB to dis-

sipate into ρG (which corresponds to the piston being removed from the Szilard box) when the

auxiliary system is reset. This is a ’lowering cycle’ where the expansion of ρWA or ρWB is used to

compress ρG, in a reverse direction to the ’raising cycle’.

The energy QA = −kTG ln pA is transferred to the first system, on a lowering A-cycle’ and

QB = −kTB ln pB on a ’lowering B-cycle’. If we follow the stages of the ’lowering A-cycle’ for a

system initially in state ρGΠAρWA we have

ρ0
1 = ρGΠAρWA

ρ0
2 = ρGAΠ0ρW

= ρGAΠ0

{
p0

αρ0
WA + p0

βρ0
WB + pαβρWAB

}

ρ0
3 = ρG

{
p0

αΠAρ0
WA + p0

βΠBρ0
WB

}
+ pαβρGAΠ0ρWAB

ρ0
4 = ρG

{
p0

αΠAρWA + p0
βΠBρWB

}
+ pαβρGAΠ0ρW

These follow the same stages as the ’raising cycle’ above. Initially, the density matrix ρ0
1

compresses the first system, through the expansion of the second, leaving the system in state ρ0
2.

Now we must apply the reset operation Ur2, which leaves the system in state ρ0
3. Finally, contact

with the TW heat bath leads to state ρ0
4.

Now the probability of a ’reversal’ back onto the ’raising cycle’ is pαβ . For a system initially

in ρGΠBρWB , the dissipation of ρGB to ρG between ρ0
2 and ρ0

3 leads to the same probability of

reversing, only now starting the raising cycle on ρGBΠ0ρW .

This completes the optimal design for attempting to imperfectly reset the auxiliary system,

using correlations with the second system, and the effect of the imperfect resetting. We have

found that, quite generally, the same considerations that constrained the design of the Popper-

Szilard Engine have arisen.

The compression of the second system, by expansion of subensembles in the first system, is

governed by the fluctuation probability relation

(pG)TG = (pW )TW

When the flow of energy is in an anti-entropic direction, then τ = TG

TW
< 1. The compression of

the second system is into subensembles ρWα which would spontaneously occur with probabilities

pWα. This gives
∑
α

pWα =
∑
α

(pGα)τ
> 1 (8.5)

as (pGα)τ
> pGα and

∑
α pGα = 1. There must be overlaps between the compressed subensembles

of the second system. Should the second system be in one of the non-overlapping regions of the
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Hilbert space, then there will be a correlation between the auxiliary and the second system that

allows the auxiliary to be reset. If, instead, the second system is located in one of the overlapping

regions, then there is more than one auxiliary state possible, and a unitary resetting operation

does not exist.

The imperfect correlations lead to a failure to reset the auxiliary, so we must consider the effect

of starting a new cycle with the auxiliary in the other states. The constraints upon this is that

the evolution of the system be described by a unitary operation and no work is performed upon

the system. When the auxiliary has not been reset this forces the engine to reverse direction.

Average length of cycles

We have shown that the engine must switch between ’raising’ and ’lowering’ cycles. We now need to

demonstrate that this switching will lead to a mean flow of heat in the entropy increasing direction.

There are two factors which need to be evaluated to calculate this: the mean number of raising

or lowering cycles before a reversal takes place, and the average amount of energy transferred per

cycle.

The average length of a complete run of raising or lowering cycles is simply given by the

reciprocal of the probability of it reversing. The total probability of reversal from a raising cycle

is

PR = pA
pαβ

pα
+ pB

pαβ

pβ

= pαβ

(
pA

pα
+

pB

pβ

)

= ((pA)τ + (pB)τ − 1)
(
(pA)1¡τ + (pB)1¡τ

)

while the probability of reversal from a lowering cycle is

PL = pαβ

= ((pA)τ + (pB)τ − 1)

The mean number of cycles for the raising and lowering cycles, NR and NL are then related by

NL =
(
(pA)1¡τ + (pB)1¡τ

)
NR

This is the essential relationship between the relative temperatures of the systems, and the

mean length of time spent on the raising and lowering cycles.

As 0 ≤ 1− τ ≤ 1 then we have

1 ≤
(
(pA)1¡τ + (pB)1¡τ

)
≤ 2

This produces the result that

NL ≥ NR
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so that the engine will, on average, spend more cycles transferring energy from the hotter to

the colder heat bath, on the lowering cycle, than it will transferring energy in the from the colder

to the hotter, on the raising cycle. The engine spends a proportion

NL

NL + NR
=

(pA)1¡τ + (pB)1¡τ

(pA)1¡τ + (pB)1¡τ + 1

of the time on the lowering cycle, and the remaining

NR

NL + NR
=

1
(pA)1¡τ + (pB)1¡τ + 1

of the time on the raising cycle. The limit that TG ≈ TW leads to NL = 2NR. This spends

one-third of the time on a raising cycle, and two-thirds of the time on a lowering cycle In the limit

TG ¿ TW , the engine approaches half the time on each cycle. Surprisingly, as the temperature

difference increases, the proportion of the time on the anti-entropic cycle goes up. This is because

with large temperature differences, both cycles are highly likely to go into reverse, until at the

limit the auxiliary is never reliably reset and the engine switches with certainty between the two

cycles.

It is interesting to note that if TG is only slightly lower than TW , the initial run of raising cycle

can last for a very long time (both NL and NR become very large). However, the apparent entropy

increase implied by this transfer of energy from the colder to the hotter is very small, precisely

because the temperature difference is so small, and will be more than offset by the increase in

entropy that comes about from the small probability of the cycle reversing, and the effect this

has on the mixing entropy of the auxiliary system. Once a reversal has occurred, of course, the

probability is that the Engine will stay on the lowering cycle, for an even longer period of time.

Mean energy per cycle

To complete the analysis, we must calculate the mean energy per cycle. It is not generally the case

that the same mean amount of energy is transferred on a lowering cycle as on a raising cycle.

On a raising cycle, the mean energy transfer is

QR = −kTG (pA ln pA + pB ln pB)

On a lowering A-cycle, the energy transfer is QA = −kTG ln pA and on a lowering B-cycle it is

QB = −kTG ln pB , but the probabilities of a lowering cycle being an A or B cycle are not pA and

pB . The mean energy transfer will therefore be different to a raising cycle.

For the initial lowering cycle, which follows from a reversal from the raising cycle, the proba-

bilities of the A or B cycles are

pA1 =
pA

pαβ

pα

pA
pαβ

pα
+ pB

pαβ

pβ

=
pApβ

pApβ + pBpα
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=
(pA)1¡τ

(pA)1¡τ + (pB)1¡τ

pB1 =
pB

pαβ

pβ

pA
pαβ

pα
+ pB

pαβ

pβ

=
pBpα

pApβ + pBpα

=
(pB)1¡τ

(pA)1¡τ + (pB)1¡τ

while a continuation of the lowering cycle will give probabilities

pA2 =
p0

α

p0
α + p0

β

pB2 =
p0

β

p0
α + p0

β

The mean energy transfer on the first lowering cycle is then

Q1 = −kTG (pA1 ln pA + pB1 ln pB)

and on subsequent lowering cycles

Q2 = −kTG (pA2 ln pA + pB2 ln pB)

To calculate the mean energy transfer, per cycle, over the course for a complete run of lowering

cycles, we need to include both these results. Any run of lowering cycles starts with one Q1 cycle.

If it continues, with probability
(
p0

α + p0
β

)
, then the mean energy per cycle after that is Q2. The

probability of reversal is the same on all cycles, so, if we are given that it does continue beyond

the Q1 cycle, then the mean number of Q2 cycles will be NL. The mean energy transferred over

the course of an entire run of lowering cycles will be

Q1 +
(
p0

α + p0
β

)
(NLQ2)

As the mean number of cycles is still NL, the mean energy transfer, per cycle is

QL =
Q1 +

(
p0

α + p0
β

)
(NLQ2)

NL

= pαβQ1 +
(
p0

a + p0
β

)
Q2

QL

−kTG
=

(
pαβ

(pA)1¡τ

(pA)1¡τ + (pB)1¡τ + p0
α

)
ln pA +

(
pαβ

(pB)1¡τ

(pA)1¡τ + (pB)1¡τ + p0
β

)
ln pB

which can be rearranged to give

QL = −kTG

((
pA − pB + (pB)1¡τ

)
ln pA +

(
pB − pA + (pA)1¡τ

)
ln pB

)

(pA)1¡τ + (pB)1¡τ

Long Term Mean We are now in a position to complete the analysis of the mean heat flow for

the imperfect resetting of the generalised Szilard Engine. The mean flow of energy, per cycle, from

the TG heat bath to the TW heat bath is
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Q =
NRQR −NLQL

NR + NL

= kTG

(
(pB)1¡τ − pB

)
ln pA +

(
(pA)1¡τ − pA

)
ln pB

(pA)1¡τ + (pB)1¡τ + 1

We know that (1− τ) ≤ 1 so

(pA)1¡τ
> pA

(pB)1¡τ
> pB

The value of Q is always negative11. The mean flow of energy must go from the hotter heat

bath to the colder heat bath.

This generalises the conclusion to Chapters 5, 6 and 7 and is independant of any particular

physical model. We have demonstrated than, even when we attempt to correlate an auxiliary to

a second system, the correlation must always fail sufficiently often to prevent a long term anti-

entropic energy flow.

Summary

We have seen that, when TG < TW it is impossible to create a perfect correlation between the

auxiliary and the subensembles of the TW system. The requirement that the resetting operation

be unitary then leads to the engine switching from a ’raising’ to a ’lowering’ cycle. However, this

also leads to a ’lowering’ cycle switching back to a ’raising’ cycle.

The key result we have shown here, is that the engine must, in the long run, transfer more

energy on the ’lowering’ cycles, than on the ’raising’ cycles. The reason for this lies in the average

length of the cycles. On the entropic lowering cycle, the probability of reversal is

pαβ

which comes from the subspace ΓWAB , representing the overlap between the compressed subensem-

bles. This is the probability of finding an equilibrium system in the overlap region, out of the entire

Hilbert space ΓW .

On the anti-entropic raising cycle, the probability of reversal depends upon which subensemble

was selected. With probability pA the subensemble was ρGA. In this case the reversal occurs if the

second system is located within ΓWAB , but now it is out of the compressed subspace ΓWA. The

probability
pαβ

pα

must be higher than the probability of reversal from the raising cycle.

The same will be true had the subensemble selected been ρGB , which has probability pαβ

pβ
.

Clearly, therefore, the mean reversal probability

pA

(
pαβ

pα

)
+ pB

(
pαβ

pβ

)
= pαβ

(
pA

pα
+

pB

pβ

)

11In the limit of TG ¿ TW the value approaches zero as the engine reverses between cycles with certainty
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will always be at least as large as the reversal probability for the lowering cycle. It is therefore

unavoidable that the engine will spend more time, in the long run, on the lowering cycles, and so

will lead to a long term energy flow from the hotter to the colder heat bath.

8.2.3 The Carnot Cycle and the Entropy Engine

We saw that when TG ≥ TW there was a perfect correlation between the auxiliary and the second

system, that could be used to perfectly reset the auxiliary. However, this only leads to a transfer

of heat from the hotter to the colder heat bath.

In this Subsection we will see how we can extract work from the second system, before the

auxiliary is reset, without losing the correlation. After the auxiliary is reset, we will discover that

this leads to heat engine operating at Carnot Cycle efficiency. We will then apply the same method

to the case where TG < TW . By performing work upon the second system, we will show that the

imperfect correlation can be made perfect, allowing the auxiliary to be reset without error. Again,

when we take the complete cycle of this, we will have a heat pump, operating at the Carnot Cycle

efficiency, so we still will not have succeeded in violating the second law of thermodynamics. The

resulting cycle is a form of the Entropy Engine considered in Appendix G.

TG ≥ TW

As pα + pβ ≤ 1 there is no overlap between the subspaces ΓWA and ΓWB , so we can write

ΓW = ΓWA ⊕ ΓWB ⊕ ΓWAB

The space ΓWAB represents an unoccupied portion of the Hilbert space. By allowing the second

system to isothermally expand into this space, we can extract some energy as work, without creating

an overlap and so without losing the correlation with the auxiliary.

To do this, the two subensembles ρWA and ρWB must isothermally expand to ρ00
WA and ρ00

WB

respectively. These density matrices spontaneously occur with probabilities p00
α and p00

β in the

equilibrium density matrix ρW .

Provided the expansion leaves p00
α + p00

β ≤ 1, we do not need to have any overlap between ρ00
WA

and ρ00
WB , and we will still have perfect correlation with the auxiliary, and we will be able to reset

the system. The expansion of the system has allowed us to extract some of the heat flow from the

hotter to the colder bath, and turn it into useful work.

The most energy can be extracted, without allowing the density matrices to overlap, will be

when p00
α + p00

β = 1, so that

ρW = p00
αρ00

WA + p00
βρ00

WB

After the second system expands and the auxiliary is reset, the second system density matrix

is

ρ00
W = pAρ00

WA + pBρ00
WB
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The second system will then return to the equilibrium distribution ρW .

Using the results in Section 8.1, there is a dissipation of notional free energy into the TW heat

bath of
∆FD

kTW
= − (

pA ln p00
α + pB ln p00

β

)

and mean work extracted of

∆FG = kTW

(
pA ln

(
p00

α

pα

)
+ pB ln

(
p00

β

pβ

))

= −kTG (pA ln pA + pB ln pB) + kTW

(
pA ln (p00

α) + pB ln
(
p00

β

))

The first term in this is simply the heat extracted from the TG heat bath. The second term is

the notional dissipation, and has a minimum value (subject to p00
α + p00

β ≤ 1) when p00
α = pA, and

p00
β = pB . This gives

∆FG ≤ k (TW − TG) (pA ln pA + pB ln pB)

≤ −S∆T

where S is the mixing entropy transferred from the system at temperature TG to the system at

temperature TW .

This gives a heat engine efficiency of

∆FG

Q
≤ 1− TW

TG

which is in complete agreement with the efficiency of a Carnot cycle.

TG < TW

We will now use the same approach for the case where the first heat bath is colder than the second

heat bath, and we have extracted energy from the colder system to compress the hotter system.

As we saw above, the compression of the second system will lead to an imperfect correlation with

the auxiliary, as there will be an overlap between the ρWA and ρWB density matrices.

To remove the overlap, we must compress ρWA and ρWB further, performing work upon the

system, until they are no longer overlapping. This will allow us to reset the auxiliary system

without error using Ur1 above. This will lead to the density matrices ρ00
WA and ρ00

WB as before,

only now, as pα + pβ > p00
α + p00

β = 1, the mean work ’extracted’

∆FG = kTW

(
pA ln

(
p00

α

pα

)
+ pB ln

(
p00

β

pβ

))

= −kTG (pA ln pA + pB ln pB) + kTW

(
pA ln (p00

α) + pB ln
(
p00

β

))

is negative, and is least negative when p00
α = pA and p00

β = pB .

Re-expressing this as work, W = −∆FG, required to pump heat Q = −kTG (pA ln pA + pB ln pB)

from a heat bath at TG to a hotter heat bath at TW , we have

W

Q
≥ TW

TG
− 1

once again agreeing with the Carnot efficiency.
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8.2.4 Conclusion

In Section 8.1 we examined how the mixing of subensembles lead to an increase in entropy, and

corresponding reduction in free energy of the ensemble. We demonstrated that this loss of free

energy is because of the restriction of unitarity upon the evolution operators. The optimal op-

erations cannot be applied to their respective subensembles, as this would require mappings of

orthogonal to non-orthogonal states. If an auxiliary system is introduced, the optimal operators

can by applied, by a conditional interaction with the auxiliary system. However, this leads to a

compensating increase of the entropy of the auxiliary system.

The two-weight Szilard Engine suggested that the work extracted from the subensembles could

be used to correlate a second system to the auxiliary, and that this correlation could be used to

reset the auxiliary, if imperfectly. However, it was found that the relationship P1 =
(

1
2

)TG/TW

played a critical role, preventing the correlation from being sufficient to allow heat to flow in an

anti-entropic direction. In this section we have examined the origin of this, in terms of the free

energy subensemble formula (7.7)

Fi = F − kT ln pi

which leads to the probability fluctuation relationship (8.4)

(p1)
T1 = (p2)

T2

This relationship plays a key role in preventing the violation of the statistical second law of

thermodynamics. It is this relationship that ensures that correlations are imperfect when the heat

flow would otherwise be anti-entropic. When we try to use an imperfect resetting, this relationship

then also guarantees that the switching between raising and lowering cycles will always prefer the

lowering cycle.

The fluctuation probability relationship also ensures that thermal fluctuations are ineffective

as a means of performing work upon other systems. Any objective, such as boiling a kettle,

that could be achieved through capturing a rare thermal fluctuation, will be more likely to occur

spontaneously, by unplugging it and leaving it, or else could be achieved reliably without resort to

fluctuations.

Finally, when we attempt to improve the correlation with the auxiliary, by performing work

upon the second system, we find that we recover a heat pump or heat engine operating at the

Carnot Cycle efficiency. It should be noted, however, that the cycle we have here is not the same

as the phenomenological Carnot Cycle, using adiabatic and isothermal expansion and compression.

At several stages in this cycle we find key thermodynamic concepts, such as the free energy, become

undefined, as we have a correlated mixture of systems at different temperatures. In fact, we have

here an example of the Entropy Engine, considered in Appendix G. The origin of the work

extracted is the transfer of mixing entropy between systems at different temperatures.
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8.3 Alternative resolutions

Having thoroughly investigated the physics of the quantum Szilard Engine, we now wish to re-

examine the arguments and resolutions put forward by other authors, and explored in Chapter 4.

We will use the simplest models possible to demonstrate how these relate to our own conclusions.

We will find that, where these resolutions are not flawed, they are physically equivalent to some

aspect of our resolution, and so represent only partial resolutions.

8.3.1 Information Acquisition

The first argument we will review will be that of Gabor and Brillouin. We will examine this

because, although, in it’s information theoretic form, it is no longer supported, it’s physical basis

has been defended by opponents of the resolution based upon Landauer’s Principle. We will find

that Gabor and Brillouin did make unnecessary assumptions in their analysis, and without these

assumptions, their explanation of the resolution does not hold. It will be instructive to examine

the basis of this when considering later arguments.

The key suggestion they made was that the demon was required ”to make some physical means

of distinguishing between the gas molecules” [DD85] and that this physical means of acquiring

information inevitably lead to a dissipation of kT ln 2 energy. In the context of Szilard’s Engine,

it was the demon using a light source to illuminate the location of the atom that would dissipate

the energy. Brillouin went on to argue that each elementary act of information acquisition was

associated with such a dissipation of energy.

If we start by considering the physical connection between the demon and the gas, we must

consider three systems

• A gas, initially in a mixture of two subensembles ρG = 1
2 (ρG(A) + ρG(B))

• A physical connection (such as a photon), initially in the unscattered state ρPh(Un), but

which will be scattered into a different state, ρPh(Sc), if the gas is in the particular subensem-

ble ρG(B).

• the demon, initially in state ρD(A), but which will move into state ρD(B) if it sees the photon

in the scattered state.

The system is initially in the state

ρ1 =
1
2

(ρG(A) + ρG(B)) ρPh(Un)ρD(A)

If the photon encounters the state ρG(B), it is scattered into a new state, creating a correlation

ρ2 =
1
2

(ρG(A)ρPh(Un) + ρG(B)ρPh(Sc)) ρD(A)

and then the demon sees the photon, creating a correlation to it’s own state

ρ3 =
1
2

(ρG(A)ρPh(Un)ρD(A) + ρG(B)ρPh(Sc)ρD(B))
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Gabor and Brillouin now argue that the mean entropy of the gas has been reduced by a mean

factor of k ln 2 on the basis that the demon, by inspecting it’s own state, knows which of the

subensembles the gas lies in. As a compensation, however, the energy of the scattered photon

is dissipated. They then argue that the energy of the photon must be at least kT ln 2, and this

completes the entropy balance.

There are two assumptions that they must make for this argument to hold. Firstly, the demon

must be able to identify the entropy reduction only when the photon is scattered, otherwise the

entropy reduction would take place each time, while the dissipation of the photon energy takes

place only on the 50% of occasions in which it is scattered. Secondly, the energy of the scattered

photon must be dissipated.

There seems little real basis for either assumption. The demon’s actions are determined by it’s

state, so it can perform a conditional unitary operation upon the gas, to produce

ρ4 =
1
2
ρG(A) (ρPh(Un)ρD(A) + ρPh(Sc)ρD(B))

reducing the entropy of the gas for either outcome. Secondly, there appears no reason why the

detection of the scattered photon must be dissipative. A suitably quick and idealised demon could

detect the photon through the recoil from it’s deflection from a mirror, rather than absorbtion by

a photodetector, and by a rapid adjustment of the apparatus effect a conditional operation upon

the photon to restore it to the unscattered state, giving

ρ5 =
1
2
ρG(A)ρPh(Un) (ρD(A) + ρD(B))

These operations are quite consistent with unitary evolution. The entropy of the gas has been

reduced, and the photon energy has not been dissipated.

Finally, as the example of the piston in the Popper-Szilard Engine above shows, there is no

necessary reason why a physical intermediary is even needed between the gas and the demon. The

essential issue, as we have seen, is not the energy of the photon, but the fact that the demon itself,

in ρ5, is described by a mixture, whose increase in entropy matches the reduction in entropy of

the gas.

We will now examine the conceptual difficulties this brings, and where the error in thinking

comes about. The problem lies in the interpretation of the density matrix of the demon. The

demon, of course, does not regard itself as being in a mixture, as it should be quite aware that it

is in either the state ρD(A) or the state ρD(B). This cuts to the heart of the statistical nature

of the problem. The density matrix ρ5 is interpreted as meaning that the state of the system, in

reality, is either

ρ0
5 = ρG(A)ρPh(Un)ρD(A)

or

ρ00
5 = ρG(A)ρPh(Un)ρD(B)

In each of these cases the entropy is reduced by k ln 2 from it’s initial value.
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The compensation is in the mixing entropy of the demon. However, if we interpret this mixing

entropy as a measure of ignorance, we are left with the awkward fact that the demon is quite

aware of it’s own state. From the perspective of the demon, the entropy would have appeared to

have decreased. Unfortunately the demon is simply a particularly efficient observer, and there is

nothing in principle to stop us substituting a human being in it’s place. This brings us right back to

Szilard’s original problem - that the intervention of an intelligent being, by making a measurement

upon a system, appears to be able to reduce it’s entropy.

The error lies in the fact that we have abandoned the ensemble, and with it the entropy of

mixing, as soon as we correlate an intelligent being to the system. We are led into this error by the

belief that the entropy of mixing represents ignorance about the exact state of a system, and an

intelligent being is certainly not ignorant about it’s own state. Thus we substitute for the ensemble

density matrix ρ5 the particular subensemble ρ0
5 or ρ00

5 that the intelligent being knows to be the

case.

The flaw in this reasoning only comes about when we consider the future behaviour of the

demon, and the requirement of unitarity, For example, we wish the demon to extract the energy

from expanding the one atom gas, and then start a new cycle. If we think of the demon in state ρ0
5,

then it is a simple matter to construct a unitary operation that achieves this. The same holds true

for ρ00
5 . The problem lies in the fact that these operations cannot be combined into a single unitary

operation. The unitary operator to complete the cycle must be defined for the entire ensemble

ρ5. By implicitly abandoning the description of the system in terms of ensembles, we are led to

construct unitary operations that do not, in fact, exist. We will find ourselves returning to this

point.

8.3.2 Information Erasure

We have found that, contrary to [DD85, EN99], Gabor and Brillouin do not provide a resolution

to the problem. Information acquisition need not be dissipative. In this we are in agreement

with Landauer [Lan61]. We must now examine how Bennett’s resolution [Ben82] using Landauer’s

Principle of information erasure relates to our analysis. It will be shown that Bennett’s analysis

is a special case of the Entropy Engine discussed above in Section 8.2.3 and in Appendix G. It is

therefore only a partial resolution.

Dispensing with the need for a physical intermediary between demon and system, we have the

simple process

ρ1 =
1
2

(ρG(A) + ρG(B)) ρD(A)

ρ2 =
1
2

(ρG(A)ρD(A) + ρG(B)ρD(B))

ρ3 = ρG(A)
1
2

(ρD(A) + ρD(B))

Bennett, in essence, accepts the argument that entropy represents ignorance and the demon

has reduced the entropy of the system, as it is not ignorant of it’s own state, but realises that the
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future behaviour of the system depends upon the state the demon is left in. The cycle must be

completed.

The two different states ρD(A) and ρD(B) are taken to represent the demon’s own knowledge,

or memory, of the measurement outcome. To complete the cycle, and allow the Engine to extract

further energy, the demon must ’forget’ this information. This will return the demon to it’s initial

state and allow the cycle to continue. It is the erasure of the information, Bennett argues, that

dissipates kT ln 2 energy, and saves the second law of thermodynamics.

This dissipation is based upon Landauer’s Principle, that the erasure of 1 bit of information

requires the dissipation of kT ln 2 energy. The basis of Landauer’s Principle may be summarised

as:

1. Information is physical. It must be stored and processed in physical systems, and be subject

to physical laws.

2. Distinct logical states must be represented within the physical system by distinct (orthogonal)

states.

from which it is derived that the erasure of one bit of logical information requires the dissipation

of kT ln 2 free energy, or work.

There is an additional assumption, which is physically unnecessary and usually unstated, which

is also necessary to Landauer’s Principle

3. The physical states that are used represent the logical states all have the same internal

entropy, and mean energy.

and the denial of this forms the basis of Fahn’s critique[Fah96]12. Removing this assumption

generalises the principle, and requires taking note of the thermodynamic expansion and com-

pression between different states as part of the physical operations by which the logical states

are manipulated. As the effect of this is only to make the relationship between information and

thermodynamics more complex, we will adopt Assumption 3 as a simplification.

It is an immediate consequence of these assumptions that the physical storage of 1 bit of

Shannon information requires a system to have k ln 2 entropy. The reason for this is simple.

1 bit of Shannon information implies two logical states (such as true or false), occurring with

equal probability, so that the Shannon information ISh = 1
2 log2

1
2 + 1

2 log2
1
2 = 1. To store this in a

physical system takes two orthogonal physical states, which will be occupied with equal probability,

giving an ensemble mixing entropy of S = k
(

1
2 ln 1

2 + 1
2 ln 1

2

)
= k ln 2. Now, to eliminate this bit,

the logical state must be restored to a single state. The Shannon information of this is zero, and

the mixing entropy is zero. As Assumption 3 requires the mean energy to be unaffected by this,

a simple manipulation of the formula E = F + TS demonstrates that the reduction of entropy by
12Fahn considers states with different entropies, but neglects the possibility of different energies. In other respects

his resolution is equivalent to Bennett’s.
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k ln 2 required to ’erase’ the bit of information isothermally requires kT ln 2 work to be done upon

the system.

In this there is nothing controversial about Landauer’s Principle. However, it clearly rests upon

the assumption that the second law of thermodynamics is valid, which was precisely the point at

issue. To examine the Principles’s relevance to the Szilard engine we must consider how the erasure

is to be achieved. Our demon will be identified with the piston state, extracted from the box in a

mixed state.

As shown in Appendix G, there is a procedure by which the piston may be restored to it’s

original state. This is equivalent to inserting the piston into a second Szilard box at some ’erasure’

temperature TE . This corresponds to the piston alternating between a raising cycle, at temperature

TG and a lowering cycle at temperature TE . The work extracted from the TG heat bath on the

raising cycle is kTG ln 2, and the work dissipated into the TE heat bath is kTE ln 2. There is an

entropy increase of k ln 2 in the TE heat bath, and decrease of k ln 2 in the TG heat bath. It should

be immediately apparent that this reversible cycle is equivalent to a Carnot cycle, with efficiency

W

Q
= 1− TE

TG

Whether this cycle is acting as a heat pump or a heat engine naturally depends upon which of TE

or TG is the hotter.

Bennett assumes that the second heat bath is at TE = TG, so the system acts as neither pump

nor engine - the work extracted from the raising cycle is used up on the lowering cycle. This

cycle is clearly the same as the Entropy Engine considered in Section 8.2.3 and Appendix G, when

restricted to the case TW = TG. Removing this restriction, the Engine operates at a Carnot cycle

efficiency.

It is nevertheless operating on a quite different principle to the more standard Carnot engine,

which is based upon the isothermal and adiabatic compression and expansion of a gas. No heat

energy actually flows directly between the two heat baths. Rather, it is the piston (or ’demon’)

that transfers S = k ln 2 entropy through a temperature difference of ∆T = TG−TE , and produces

the characteristic gain in free energy, ∆F = −S∆T .

To obtain this gain, the temperature of erasure must be different to the temperature at which

the free energy is extracted from the Szilard Box. This raises an issue that is not often addressed by

the information theoretic analysis of Maxwell’s demon and thermodynamics - there is no relation-

ship between the entropy involved in information storage and manipulation, and thermodynamic

temperature. Although Landauer’s Principle is framed in terms of an isothermal erasure pro-

cess, such as that used for the Szilard box above, the discussion of the ’fuel value’ of blank tapes

[Ben82, Fey99] rarely makes clear how this temperature is to be identified, as a purely information

theoretical blank tape has no temperature associated with it. For example, if we represent the

states by the spin up and spin down states of an array of electrons, and there is no magnetic

field, then all possible logical states have the same energy, and the temperature is undefined. By
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emphasising the role of information, the additional role of temperature has been missed. An ex-

ception is Schumacher[Sch94] whose information theoretic heat engine may be compared to the

more physically explicit arrangement considered here.

The information erasure argument can now be seen to be insufficient to produce a complete

resolution, and unnecessary even where it is valid. It’s physical basis is sound, but it is not general

enough, and information theory is not necessary to understand it once the physical principles are

correctly understood.

Let us examine how it works as a resolution. First, we create the problem by abandoning the

ensemble of the states of the auxiliary system. Then we characterise the different auxiliary states

as information. To quantify the information, however, we must use the Shannon formula, and this

just reintroduces the ensemble we abandoned. We then try to connect the Shannon information

back to thermodynamics by appealing to the Landauer Principle, which is itself derived from an

assumption that the second law of thermodynamics is universally valid. Had we not abandoned

the ensemble of auxiliary states in the first place, no reference to information would have been

necessary.

Finally, we note that information erasure has nothing to say about the imperfect resetting

considered in Section 8.2.2, and so, as it does not apply to the Popper-Szilard Engine, it is also

insufficient to completely resolve the paradox.

8.3.3 ’Free will’ and Computation

There have recently been criticisms of the information erasure resolution by Earman and Norton

[EN98, EN99], and by Shenker[She99]. Although we agree with the general tenor of both papers,

we believe that, unfortunately, both of them misunderstand the nature of the Bennett-Landauer

resolution. This leads them to suspect that there are faults to be uncovered in the Landauer

principle, and to suggest that the true resolution should be found in thermal fluctuations, with

a similar physical basis to Gabor and Brillouin’s work, but that these fluctuations need not be

interpreted in any information theoretic manner. Thus, in Earman and Norton we read

[Bennett’s] devices can only succeed in so far as we presume that they are not canon-

ical thermal systems. Thus Bennett’s logic is difficult to follow. Landauer’s Principle is

supported by arguments that require memory devices to be canonical thermal systems,

but Szilard’s Principle is defeated by the expedient of ignoring the canonical thermal

properties of the sensing device.

and in Shenker

[The resolution] sacrifices basic ideas of statistical mechanics in order to save the

Second Law of Thermodynamics. Szilard and his school claim that if we add the

dissipation . . . then the Demon never reduces the entropy of the universe . . . This way

the Second Law is invariably obeyed. The principles of statistical mechanics, however,
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are violated. According to these principles, entropy can decrease as well as increase,

with some non-zero probability.

Thermal Fluctuations

It is unclear what Earman and Norton mean when they suggest Bennett ignores ’canonical thermal

properties of the sensing device’. It is clearly the case that the auxiliary starts in only one of the

states that is possible, so is not in a full thermal equilibrium. However, this depends upon the

thermal relaxation times. There is no reason why selecting systems with large thermal relaxation

times, for transitions between some subspaces, and preparing them initially in one of the subspaces,

does not constitute a ’canonical thermal system’, or that use of such a system is illegitimate.

In [EN99][Appendix 1] they claim to present a resolution, equivalent to information theoretic

arguments, in terms of thermal fluctuations. However, their analysis rests upon the two equations

S[O, D] = S[O] + S[D]

∆S = 0

where S[O] is the entropy of the object subsystem and S[D] is the entropy of the demon. From

this they deduce ∆S[D] = −∆S[O] and conclude that, as the entropy of the system is reduced by

the measurement, the entropy of the demon must have increased.

The problem with this analysis is that these equations are simply wrong when applied to

correlated systems. The correct equation is given in Equation 2.5 as

S0[O,D] = S[O] + S[D] + S[O : D]

where S[O : D] is the correlation between the subsystems. The value of S0 will be constant, while

Earman and Norton’s S will increase by k ln 2 when the demon measures the state of the gas, then

decrease by the same amount when the demon uses this correlation to change the state of the gas.

Thus Earman and Norton’s argument that

A demon closing the door at this moment has effected a reduction in entropy.

[∆S[O] = −∆S[D]] assures us that this reduction must be compensated by a corre-

sponding dissipation of entropy in the demonic system

is incorrect, and it is unsurprising the they are unable to offer an account of how this dissipation

occurs. While it is true that an increase in entropy of the demon system takes place, it does not

do so for the reason, or in the manner that Earman and Norton appear to think.

Earman and Norton proceed to suggest that, if the demon can non-dissipatively measure the

location of the atom in the box, then an erasure can take place non-dissipatively, allowing the

second law to be violated. As this criticism would seem to be applicable to our analysis of the

Szilard Engine above, we must consider it carefully below. It will be useful to examine Shenker’s

arguments first, though.
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Free Will

Shenker presents a different resolution, based upon the issue of whether the demon may be consid-

ered to have ’free will’. If we strip this of it’s philosophical connotations, we find that the specific

property Shenker makes use of is more or less equivalent to the absence of ’self-conditional’ opera-

tions in unitary dynamics, and that this is the same reason why Earman and Norton’s suggestion

fails. Specifically, she refers to

a system has free will if it is capable of choosing and controlling its own trajectory

in the state space

Now, to represent this in terms of unitary dynamics this would correspond to an operation

where

U |0〉 = |0〉
U |1〉 = |0〉

and we have seen before, this is not a unitary operation. It will be useful now to elaborate this

with the help of the conditional dynamics on an auxiliary system

Ua = |π1〉 〈π0 |P0 + |π0〉 〈π0 |P1

+ |π0〉 〈π1 |P0 + |π1〉 〈π1 |P1

Ub = Π0U1 + Π1U2

with P0 and P1 are projectors on the system of interest, Π0 and Π1 are projectors onto the states

of the auxiliary system, and U1 = |1〉 〈0 |+ |0〉 〈1 |, U2 = |1〉 〈1 |+ |0〉 〈0 |.
The system is initially in the state ρ = 1

2 (P0 + P1) and the auxiliary is in the state Π0. The

auxiliary examines the object, and goes into a correlated state. It then refers to it’s own state

and sets the object system to P0. As noted before, this conditional operation leaves the auxiliary

system in a higher entropy state, which compensates for the manner in which the entropy of the

system of interest has been reduced.

Shenker’s characterisation of the absence of ’free will’ amounts to the statement that a system

cannot refer to it’s own state to reset itself. A unitary operation cannot be conditionalised upon

the state of the system it acts upon. There are no ’self-conditional’ unitary interactions. If we

attempt to construct such an operator, we must identify the auxiliary with the system of interest.

Terms such as |π1〉 〈π0 |P0 would ’collapse’ as the operators act upon each other. Even assuming

such a ’collapse’ is well defined, the two conditional operators would become operators such as

U 0
a = |1〉 〈0 |+ |1〉 〈1 |

U 0
b = |1〉 〈0 |+ |0〉 〈0 |

neither of which are unitary. A system which could exercise ’free will’, in this sense, would be able

to violate the second law of thermodynamics by resetting it’s own state.
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However, this is not the whole story. In [ZZ92], it is demonstrated that there are classical,

deterministic systems which can be rigorously entropy decreasing. None of the elements in the

system can be regarded as exercising ’free will’ in Shenker’s terminology. Nevertheless, the second

law of thermodynamics is broken. The reason for this is that the forces considered in [ZZ92] are

Non-Hamiltonian. This is equivalent to a form of non-unitary dynamics in quantum theory. In

[Per93, Chapter 9] Peres shows how such a non-unitary modification to quantum theory will also

lead to situations where entropy can decrease. Clearly, the absence of free will is not enough to

completely resolve the problem.

Computation

Earman and Norton argue that a computer resetting non-dissipatively should be possible. Their

argument turns upon the fact that there exists a non-dissipative program by means of which a bit

may be switched from one state to the other. This is simply the operation U1. There is a second

program, represented by operation U2 which leaves the bit unchanged. Neither of these operations

are dissipative. They now propose a program in which the bit is used to store the location of the

atom in the Szilard Engine. The computer then goes into one of two subprograms, depending upon

the state of the bit, which extracts the energy from expanding the state of the atom.

Programme-L leaves the memory register unaltered [U2 is applied] as it directs the

expansion that yields a net reduction of entropy. Programme-R proceeds similarly.

However, at its end Programme-R resets the memory register to L [U1 is applied]. This

last resetting is again not an erasure.

The flaw is that the choice of whether to execute Programme-R or Programme-L (which are,

of course, just unitary operations), is made by a unitary operation that must be conditionalised

upon the state of the memory register itself. As we have seen, such an operation cannot include

the U1 or U2 operations, as this would be a ’self-conditionalisation’ and would result in a non-

unitary operation. A similar confusion affects their later argument, where they combine several

Szilard Engines, and attempt to extract energy only when ’highly favourable’ (and correspondingly

rare) combinations of atom positions occur. In this argument, they propose to only perform the

’erasure’ when those favourable combinations occur, thereby incurring a very small mean erasure

cost. Again, however, the choice of whether to perform the ’erasure’ operation or not cannot be

made conditional upon the state of the very bit it is required to erase, and their argument fails.

This is not some ”details of computerese”, but due to the requirement that the evolution of any

system be described by a unitary operation.

8.3.4 Quantum superposition

We now return to the quantum mechanical arguments put forward by Zurek[Zur84] and Biedenharn

and Solem[BS95]. They argue that the gas, being in a quantum superposition of both sides of the
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partition, exerts no net pressure upon the piston, and so the piston cannot move until the gas is

localised by a quantum measurement by the demon. Clearly, the piston arrangement considered in

Chapters 5 and 6 provides a decisive counterexample to this argument. In fact, as we have argued

in Section 5.3.3, the opposite conclusion, that the piston must move, can be reached purely from

consideration of the linearity of quantum evolution.

However, it is now possible, and informative, to consider how such a mistake could have been

made. We believe that the reason for this can be understood from the discussion of Section 8.1.

This mistake, we will find, has been at the heart of much of the confusion surrounding the operation

of the Szilard Engine, applies to the classical as well as the quantum description and is responsible

for making the information theoretic analysis seem more plausible. By removing this mistake, we

can even apply this analysis of the Szilard Engine to the expansion of a macroscopic N-atom gas,

and we will find the same issues are raised, and resolved, as for the one atom gas.

We start with the Hamiltonian in Section 5.1, with an infinitely high potential barrier. We now

consider a modification of this Hamiltonian, with the potential barrier displaced by a distance Y

H 0(Y )Ψn =
(
− h̄

2m

∂2

∂x2
+ V 0 (x, Y )

)
Ψn

with

V 0 (x, Y ) =





∞ (x < −L)

0 (−L < x < Y − d)

∞ (Y − d < x < Y + d)

0 (Y + d < x < L)

∞ (x > L)





The eigenstates of this gas are the same as the internal eigenstates of the gas, with a piston

located at position Y , denoted by
∣∣Ψλ

l (Y )
〉

and |Ψρ
l (Y )〉, for states located entirely to the left or

right of the partition, respectively. The density matrix of the gas with Y = 0 is

ρP0 =
1
2

(
ρλ + ρρ

)

ρλ =
1

ZP0

∑

l

e
¡ ε

kTG
( 2l

1−p )2 ∣∣Ψλ
l (0)

〉 〈
Ψλ

l (0)
∣∣

ρρ =
1

ZP0

∑

l

e
¡ ε

kTG
( 2l

1−p )2

|Ψρ
l (0)〉 〈Ψρ

l (0) |

ZP0 =
∑

l

e
¡ ε

kTG
( 2l

1−p )2

If we now consider H 0(Y ) as a time dependant Hamiltonian, with a changing parameter Y ,

we can apply the analysis of Section 6.2 to the movement of the potential barrier, rather than

the movement of the piston (this will involve ignoring or suppressing the piston states where they

occur). As Y moves, the density matrix ρP0 will evolve into

ρ0
P1(Y ) =

1
Z 0

P1

{
∑

l

e
¡ ε

kTG
( 2l

Y +1−p )2 ∣∣Ψλ
l (Y )

〉 〈
Ψλ

l (Y )
∣∣

+e
¡ ε

kTG

(
2l

Y−1+p)

)2

|Ψρ
l (Y )〉 〈Ψρ

l (Y ) |}
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Z 0
P1 =

∑

l

{
e

¡ ε
kTG

( 2l
Y +1−p )2

+ e
¡ ε

kTG
( 2l

Y−1+p )2
}

This is a significantly different density matrix to the density matrix the gas evolves into when

the moveable piston is present. If we trace out the weight and piston states from ρT1(Y ) in

Equation 6.14, we find

ρP1(Y ) =
1

ZP1
{
∑

l

e
¡ ε

kTG
( 2l

Y +1−p )2 ∣∣Ψλ
l (Y )

〉 〈
Ψλ

l (Y )
∣∣

+e
¡ ε

kTG

(
2l

Y +1−p)

)2

|Ψρ
l (Y )〉 〈Ψρ

l (Y ) |}
ZP1 =

∑

l

{
e

¡ ε
kTG

( 2l
Y +1−p )2

+ e
¡ ε

kTG
( 2l

Y +1−p )2
}

Let us consider the behaviour of ρ0
P1, supposing Y has moved to the right. The

∣∣Ψλ
l (Y )

〉
states

will have expanded, giving up energy as before, through pressure exerted upon the potential barrier

(this energy must be absorbed by a work reservoir, as before). However, the |Ψρ
l (Y )〉 states have

been compressed, which requires energy to be extracted from the work reservoir. The pressure from

the left is − kTG

Y +1¡p and that from the right − kTG

Y ¡1+p , giving a mean pressure on the co-ordinate Y

of

P 0
P1 = −kTG

(
Y

Y 2 − (1− p)2

)

Now, this pressure is zero when Y = 0, is positive (pushing in the positive Y direction) when Y is

negative and vice versa. This appears to be a restoring force, which if applied to a piston, would

keep it located in the center! Yet we saw from ρT1(Y ) that the piston moves.

The reason for this apparent paradox is that Y is used quite differently in ρ0
P1(Y ) compared

to ρP1(Y ). In ρP1(Y ), for the wavefunctions on the right of the piston Y represents the piston

at a position −Y . The result of this change of sign is that, when the pressure exerted upon the

moving piston is calculated from ρP1(Y ), it is always in the direction of increasing Y (which for

the gas on the right represents −Y becoming more negative). The freely moving piston represents

a physically very different situation to the constrained potential barrier.

Let us consider the difference between the two situations. The density matrices are represented

by

ρP1(Y ) =
1
2
ρλ(Y ) +

1
2
ρρ(−Y )

ρ0
P1(Y ) =

1
2
ρλ(Y ) +

1
2
ρρ(Y )

ρλ(Y ) =
1

Zλ(Y )

∑

l

e
¡ ε

kTG
( 2l

Y +1−p )2 ∣∣Ψλ
l (Y )

〉 〈
Ψλ

l (Y )
∣∣

Zλ(Y ) =
∑

l

e
¡ ε

kTG
( 2l

Y +1−p )2

ρρ(Y ) =
1

Zρ(Y )

∑

l

e
¡ ε

kTG
( 2l

Y−1+p )2

|Ψρ
l (Y )〉 〈Ψρ

l (Y ) |

Zρ(Y ) =
∑

l

e
¡ ε

kTG
( 2l

Y−1+p )2
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Note that ρP1(0) = ρ0
P1(0) = ρG1, so the system starts in equilibrium

We represent the unitary evolution operator associated with H 0(Y ) where Y is moving slowly

to the right by UR and where Y is moving slowly to the left by UL. Now UR is the optimum

operator for extracting energy from ρλ(Y ), while UL is the optimum operator for extracting energy

from ρρ(Y ). As discussed in Section 8.1, these cannot be combined into a single operator. The

application of either UR or UL to ρG1 will lead to ρ0
P1(Y ). This is not the equilibrium distribution

that would be reached had we started by inserting the potential barrier at Y .

The equilibrium distribution of ρλ(Y ) and ρρ(Y ) is

ρ(Y ) = p0
1ρ

λ (Y ) + p0
2ρ

ρ (Y )

where p0
1 + p

′
2 = 1, but p0

1 6= 1
2 unless Y = 0. This evolution moves the density matrix away from

equilibrium. As was shown in Section 8.1, this requires a mean work expenditure. Note, however,

that this work expenditure is only expressed as an average. We are still able to regard this as

gaining energy on some attempts, but losing more energy on others.

In order to gain energy reliably, we must employ an auxiliary system, and correlate this to

the application of UR or UL, depending upon the location of the one atom gas. This leads to the

density matrix of the gas to become ρP1(Y ), instead of ρ0
P1(Y ). The mistake is to assume that

this auxiliary requires the act of observation by an external ’demon’. As we have noted, the piston

itself constitutes an auxiliary system, so no external observer is required to ’gather information’.

The conditionalisation of the evolution operator upon the piston is related to the condition-

alisation of the internal Hamiltonian of the gas. The constrained potential barrier Hamiltonian

breaks down into right and left subspaces H 0 (Y ) = Hλ (Y ) ⊕ Hρ (Y ) , between which there are

no transitions, with Y as the externally constrained parameter. The internal Hamiltonian for the

gas, when the piston is taken into account, however, is always a conditional Hamiltonian

H =
∑

n

Π(Yn)
(
Hλ (Yn)⊕Hρ (Yn)

)

where Π (Yn) are projectors on the position of the piston.

If we demand that the position of the piston is an externally constrained parameter, then

we find that [Zur84, BS95] would be correct. Nonetheless, this is not a quantum effect, as the

same result would also hold for a classical one-atom gas. Thus, even to the extent to which their

contention is true, it is nothing to do with quantum superpositions. However, the most important

conclusion is that this demand is simply unreasonable. It does not correspond to any standard

practice in thermodynamics. This point Chambadal[Cha73] argues is the key error in the ’paradox’

of the Szilard Engine

In all piston engines work is supplied by the movement of a piston under the action

of an expanding fluid. Here, though, it is the operator who displaces the piston. . . It

is clear that this strange mode of operation was imagined only to make it necessary to

have information about the position of the molecule.
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It is hard to disagree with this sentiment13. In fact, we can now go further and consider how

this ’mode of operation’ would affect an N-atom gas. Let us examine the situation where ρλ
N (Y )

corresponds to N atoms confined to the left of a piston at Y , and ρρ
N (Y ) with them confined to

the right. Obviously such a situation would not be likely to arise from the insertion of a piston

into an N-atom gas, but we can still consider a situation where there are two boxes, one of which

encloses a vacuum, and one contains an N-atom gas, and some randomising process in the stacking

of the boxes makes it equally likely which box contains the gas.

In an ensemble of such situations, the mixing entropy is still k ln 2. If N is large, this will

be negligible compared to the entropy of the gas. It is unsurprising that this negligible mixing

entropy will pass unnoticed by macroscopic experiments. However, if we wish to place the two

boxes side by side, and replace their shared wall with a moveable piston, we can extract energy

of expansion by connecting the piston to some arrangement of weights, similar to that considered

for the Popper-Szilard Engine. No-one, under such circumstances, could seriously believe that the

piston would not move, without an external observation to determine on which side of the piston

the N-atom gas is located, or that an operator is required to know in which direction the piston

should be moved14. The ’strange mode of operation’ is seen to be quite unnatural and unnecessary.

Nevertheless, if we consider the work we gain from the expansion, NkT ln 2, and the change in

entropy of the gas ∆S = (N − 1) k ln 2, we find we have gained the tiny amount kT ln 2 more than

we should have done. No information gathering of any kind has taken place, and no observation

was necessary. The reason for this gain is that the mixing entropy of k ln 2 has been eliminated

from the gas. However, the piston is now in a mixture of states, having increased it’s own entropy

by k ln 2. As this is a negligible quantity, compared to the dissipation of macroscopic processes, it

would naturally seem a simple matter to restore the piston to it’s original condition (though, of

course, with an N-atom gas, one could not start a new cycle by re-inserting the piston). In fact such

a restoration requires some compression of the state of the piston as it’s entropy must decrease by

k ln 2, and so requires some tiny compensating increase in entropy elsewhere. No paradox would

ever be noticed for such macroscopic objects, as both the free energy gain, and entropy increase

are negligible.

Nevertheless, the situation is otherwise identical, in principle, to the Szilard Engine. No-one, we

hope, would suggest that the most sensible resolution is that k ln 2 information must be gathered

about the location of the N-atom gas, by some dissipative process, before the expansion can take

place, or that thermal fluctuations in the piston prevent it’s operation! If such interpretations

seem absurdly contrived in the N-atom case, they should be regarded as equally contrived in the

single atom case.
13Although we must then disagree with Chambadal’s conclusion that work can be continuously extracted from

the Engine.
14Or even worse, Biedenharn and Solem’s suggestion that an observation may be required to ’localise’ the N-atom

gas to one side or the other, and that this ’observation’ involves the thermal compression of the gas!
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8.4 Comments and Conclusions

The analysis and resolution of the Szilard Paradox presented in this Chapter addresses all the

problems raised in Chapter 4, and shows how the previous resolutions stand in respect to one

another. Rather than ’unseating’ previous attempts to resolve the problem, we have attempted

to show how the resulting partial resolutions fit into a more general structure. Nevertheless, the

analysis of this Chapter is not definitively comprehensive. We will now briefly discuss the principal

areas where further analysis may be considered to be desirable. We will then conclude by reviewing

the reason for the occurrence of the Szilard Paradox, and how our analysis shows this reason to

be mistaken.

8.4.1 Criticisms of the Resolution

There are four places in the analysis where we have made assumptions about the physical processes

involved, or where we have not analysed the most general situation conceivable. These represent

situations where further work could be done to provide a more comprehensive resolution.

These four areas may be summarised as:

• Non-orthogonality of subensembles;

• More than two subensembles;

• Pressure fluctuations;

• Statistical Carnot Cycle.

We will now review each of these areas

Non-orthogonality of subensembles

Throughout Chapter 8 we have assumed that the density matrix of a system is decomposed into

orthogonal subensembles:

ρ = p1ρ1 + p2ρ2

or if it is not, it can be decomposed into three orthogonal subensembles, where the third is the

overlap between the initial two subspaces. This will always be the case for classical ensembles.

However, for quantum systems, the problem is more subtle. Let us consider the projection P̂

of a density matrix ρ, onto some subspace of the total Hilbert space, and onto it’s complement

̂1− P .

ρ1 = P̂ ρP̂

ρ2 = ( ̂1− P )ρ( ̂1− P )

The decomposition

ρ = ρ1 + ρ2
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will only be true if ρ was diagonalised in a basis for the projected spaces. This can be seen in both

the Szilard Box, and the quantum weight. The insertion of the potential barrier, or shelf, must

deform the wavefunctions until previously non-degenerate solutions become degenerate (which

allows the density matrix to diagonalise in a different basis). Until this degeneracy occurs, there

will be phase coherence between the wavefunctions, that means we cannot simply divide the density

matrix into two.

For the situations considered here, we have argued that the work required to create this degen-

eracy is negligible. Naturally there will be situations where this will not be true. As long as this

work is applied slowly and isothermally, however, it should always be recoverable at some other

point in the cycle. This simply represents an additional, if difficult, energy calculation and so we

do not believe it significantly affects our argument.

More than two subensembles

We have only considered situations where the ensemble is separated into two. The most general

solution is where the ensemble is separated into a large number of subensembles, and the notional

free energy is extracted from each. It can be readily shown that the increase in the entropy of the

auxiliary must be at least as large as T times the gain in free energy. However, complications arise

when we attempt to consider an imperfect correlation between the auxiliary and a compressed

second system, as we must consider all possible overlaps between the compressed states of the

second system. For n initial subensembles, there will be (2n−1) different correlations between the

auxiliary and the second system. Demonstrating that the Engine must, in the long run, go into

reverse for all possible unitary operations, for all possible values of n, remains a considerable task.

Pressure fluctuations

We have assumed that the piston moves with a constant speed, under pressure from the gas and

that, although the fluctuation in pressure exerted by the gas upon the piston, at any one time, is

large, over the course of an entire cycle it is small. A more rigorous approach would be to attribute

a kinetic energy to the piston, and allow the pressure fluctuations from the gas to cause this to

vary. The result would be a form of Brownian motion in the piston. It might be argued that this is

the ’fluctuations in the detector’ that should be seen as the real reason the Engine cannot operate,

similar to the fluctuating trapdoor. However we believe this is false.

Although such motion would mean the piston would not reach the end of the box at a specific

time, we can be certain that it would never reach the ’wrong’ end of the box (as this would require

compressing the one atom gas to a zero volume). It is a simple matter to create a new set of

evolution operators, which, rather than extract the piston at a given time, will extract the piston

at any time when it is in one of the three states: at the left end; at the right end, and in the center

of the box. This means that sometimes the piston will be inserted and removed without having

any net effect, reducing the time it takes for the Engine to operate. However, other than this, it
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would not affect the conclusions above.

Statistical Carnot Cycle

Finally, in Section 8.2 we have only considered two extremes: the Entropy Engine, where we

perform work upon the system to ensure a perfect correlation between the auxiliary and the

second system; and the imperfect correlation, where we perform no work at all. In between there

would be the situations where some work is performed to improve the correlation, but not enough

to make the correlation perfect. It may be possible to use this to produce a ’Statistical Carnot

Cycle’, in which the efficiency of the Carnot Engine is exceeded, as long as the cycle continues,

but a probability of the Engine going into reverse is allowed. Any initial gains in such an Engine

are always more than offset in the short run by the increase in entropy of the auxiliary, and in the

long run by the tendency of the machine to go into reverse.

8.4.2 Summary

In Chapter 4 we considered the arguments surrounding the identification of information with en-

tropy. Essentially, these came from a dissatisfaction with the description of physical systems using

statistical mechanics, and in particular, the status of entropy. At least part of the problem arises

because of confusion between the Boltzmann description of entropy, and the Gibbs description,

and how these two descriptions deal with fluctuations.

The system is assumed to be in a particular state, at any one time, but over a period of

time comparable to the thermal relaxation time, the state becomes randomly changed to any of

the other accessible states, with a probability proportional to e¡E/kT . The Boltzmann entropy

involves partitioning the phase space into macroscopically distinct ’observational states’, with

entropy SB = k ln W , where W is the phase space volume of the partition. The system will

almost always be found in the high entropy ’observational states’, but has some small probability

of ’fluctuating’ into a low entropy state. Further, if the ’observational states’ can be refined, then

the entropy of the system will decrease, until, with a completely fine grained description, it appears

to become zero!

For the Gibbs entropy, an ensemble of equivalently prepared states must be considered, and

the entropy is the average of −k ln p over this ensemble. A fluctuation is simply the division of

the ensemble into subensembles, only one of which will be actually realized in any given system.

However, by refining this to the individual states, the entropy of the subensembles go to zero. This

is not a problem, so long as one does not abandon the ensemble description, as the entropy is still

present in the mixing entropy.

The conceptual difficulty arises because the ensemble clearly does not actually exist. Instead

there is actually only a single system, in a single state. It should seem that if we could determine

the actual state, we could reduce the entropy of the system to zero. This is the origin of Maxwell’s

Demon and the Szilard Paradox.
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The resolution rests upon the fact that the Demon, as an active participant within the system,

must be described by the same laws as the rest of the system. We find that, to be subject to a

unitary evolution, the Demon can only reduce the observed system’s entropy by increasing it’s own.

The fluctuation probability relationship ensures that correlating a second system cannot improve

the situation.

Information theory would see the idea that the demon is an intelligent being as central, and

that this is different from the ’demonless’ auxiliary, such as the fluctuating trapdoor. To resolve

this, it is necessary to supply principles to connect the operation of intelligence to the physical

system. What are the principles required? No less than the Church-Turing thesis, that

What is human computable is Universal Turing Machine computable [Zur90a]

to be sure that all intelligent creatures can be simulated as a computer, and then Landauer’s

Principle, to connect the storage of information to thermodynamics. However, if we consider what

the net effect of this is, we find it is simply to establish that we must treat the ’intelligent being’

as a physical system, subject to unitary evolution and described by an ensemble. As we have

shown, the role played by an information processing demon is nothing more or less than that of

the auxiliary in the demonless engine, for which no reference to information theory was considered

necessary.
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Chapter 9

Information and Computation

In Chapters 4 and 8 we made reference to Landauer’s Principle, as a means of providing a link

between thermodynamics and information. Although we concluded that the Principle was insuffi-

cient to provide a complete resolution to the Szilard Paradox, we did not find a problem with the

Principle itself.

In this Chapter we will re-examine Landauer’s Principle to see if, on it’s own, it provides a

connection between information and thermodynamics. In Section 9.1 we will briefly review the

theory of reversible computation. We will show that classical reversible computation can be made

very efficient, or ’tidy’, by a procedure due to Bennett. However, we will also demonstrate that

Bennett’s procedure does not work in general for quantum computations. While these must be

reversible, there exist quantum computations that cannot be made ’tidy’ and this has consequences

for the thermodynamics of distributed quantum computations.

Section 9.2 will then consider the different meanings of the information measure and the entropy

measure. It will be demonstrated that there are physical process that are logically reversible but

not thermodynamically reversible, and there are physical processes that are thermodynamically

reversible, but not logically reversible. It is therefore demonstrated that, although Shannon-

Schumacher information and Gibbs-Von Neumann entropy share the same mathematical form,

they refer to different physical concepts and are not equivalent.

9.1 Reversible and tidy computations

The theory of reversible computation was developed following the discovery of Landauer’s Principle[Lan61],

that only logically irreversible operations implied an irretrievable loss of energy (prior to that, it

was thought that each logical operation involved a dissipation of kT ln 2 per bit). The amount of

lost energy is directly proportional to the Shannon measure of the information that is lost in the

irreversible operation.

We will now give a concrete physical example of how this Landauer erasure operates, using

the Szilard Box. It will be demonstrated that the dissipation of kT ln 2 work only occurs over a
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complete cycle, and not during the actual process of erasing the ’information’. For understanding

the thermodynamics of computation we find that this distinction is unimportant, although in the

remainder of the Chapter we will see that the distinction can be significant.

In Subsection 9.1.2 we will then show how Landauer’s Principle is applied by Bennett to produce

thermodynamically efficient classical computations, but in Subsection 9.1.3 we will show that this

approach cannot, in general, be applied quantum computations[Mar01].

9.1.1 Landauer Erasure

Landauer’s Principle is typically formulated as:

to erase a bit of information in an environment at temperature T requires dissipation

of energy ≥ kT ln 2 [Cav90]

We will represent the storage of a bit of information by a Szilard Box, with a potential barrier

in the center. The atom on the lefthand side of the barrier represents the logical state zero, while

the atom on the righthand side represents the logical one. Landauer argues that RESTORE TO

ZERO is the only logical operation that must be thermodynamically irreversible1.

Firstly let us consider how much information is stored in the bit. If the bit is always located

in the logical one state, there is an obvious procedure to RESTORE this to the logical zero state:

1. Isothermally move the barrier and the righthand wall to the left at the same rate. The work

performed upon the barrier by the atom is equal to the work the wall performs upon the

atom so no net work is done.

2. When the wall has reached the original location of the barrier, the barrier is by the lefthand

wall. Now lower the barrier from the lefthand wall, and raise it by the righthand wall,

confining the atom to the left of the barrier,

3. Return the righthand wall to it’s original state.

Naturally, if we have the bit in the logical zero state, an operation required to RESTORE it to

zero is simply: do nothing. At first, this implies that Landauer’s Principle is wrong - a bit may

always be RESTORED TO ZERO without any work being done. Of course, we saw the fallacy

in this argument in Section 8.3.3, as the two procedures here cannot be combined into a single

operation.

What this tells us, however, is that if it is certain that the bit is on one side or the other, it

may be RESTORED TO ZERO without any energy cost. It is only when the location of the bit

is uncertain that there is an energy cost. The information represented by this is

ISh = −
∑

a

pa log pa

1For a single bit, the only other logical operation is NOT.
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If the location of the bit is certain, it conveys no useful information. It is only if there is a

possibility of the bit being in one state or the other that it represents information. In other words,

after the performing of some series of logical operations the atom in the Szilard Box will be to

the left of the barrier with probability p0 and to the right with probability p1, over an ensemble

of such operations. ISh represents the information the person running the computation gains by

measuring which side of the box contains the atom.

We will now show how the RESTORE TO ZERO operation implies an energy cost of IShkT ln 2.

We are going to assume that the probabilities pa are known. The information that is unknown is

the precise location of the atom in each individual case from the ensemble.

First, let us note that we have already shown above that for p0 = 1 and p0 = 0 we can perform

the operation with zero energy cost. These are situations where ISh = 0.

Next, we follow this procedure if p0 = p1 = 1
2 , for which ISh = 1:

1. Remove the barrier from the center of the box, and allow the atom the thermalise.

2. Isothermally move the righthand wall to the center of the box. This compresses the atom to

the lefthand side, and requires work kT ln 2.

3. Re-insert the potential barrier by the righthand wall, confining the atom to the left of the

barrier

4. Return the righthand wall to it’s initial location.

This has required kT ln 2 work to be performed upon the gas. This energy is transferred into the

heat bath, compensating for the reduction in entropy of the atomic state.

If the probabilities are not evenly distributed the Shannon information, ISh < 1 and we must

follow a slightly different procedure:

1. While keeping the central barrier raised, isothermally move it’s location to Y = 1− 2p1. As

shown in Section 8.1 and Appendix H, this extracts a mean energy (1− ISh) kT ln 2.

2. Remove the barrier from the box and allow the atom to thermalise.

3. Isothermally move the righthand wall to the center of the box. This compresses the atom to

the lefthand side, and requires work kT ln 2.

4. Re-insert the potential barrier by the righthand wall, confining the atom to the left of the

barrier

5. Return the righthand wall to it’s initial location.

The net work performed upon the gas is now IShkT ln 2.

This shows how the RESTORE TO ZERO operation comes with the work requirement of

kT ln 2 per bit of Shannon information. This work is transferred into an environmental heat bath,

so represents the heat emitted by a computer. Other logical operations do not give off heat.
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However, it is not clear that the work here has been lost, as the key stage (compressions

of the atom by the righthand wall) is thermodynamically reversible. Although the energy may

described as dissipated into the heat bath, the entropy of the one atom gas has decreased by k ln 2

in compensation. The free energy of the atom increases by kT ln 2. The work performed upon

the system may, it appears, be recovered. The actual erasure of the information occurs when the

potential barrier lowered, and this does not require any work to be performed.

The key to understanding the role of Landauer’s Principle in the thermodynamics of compu-

tation is to consider the entire computational cycle. At the start of the computation, there will,

in general, be large numbers of memory registers. To perform operations upon these, they must

all be initially in a known state, which we may by convention choose to be logical zero. So the

computation must start by initialising all the memory registers that will be used. If we start with

our Szilard Box representing a Landauer Bit, then the atom will be equally likely to be on either

side of the box. To initialise it, we must compress the atom to the left. This takes kT ln 2 work.

This work has not been lost, as it has been stored as free energy of the atom.

In other words, computation requires an investment of kT ln 2 free energy, per bit of information

that must be stored in the system. At any time in the computation, any bit that is in a known

state can have this free energy recovered, by allowing it’s state to expand to fill the entire Szilard

Box once more. A known state is one that is in a particular value, regardless of the choice of input

state, (we may extend this to include the same state as an initial input state).

When we examine a computational network, given the program and the input state, we can

recover all the free energy from the bits that are known. Other bits may be in determinate states,

well defined functions of the input. It may be argued that these are, therefore, ’known’ but, as

these states are non-trivially dependant upon the input state (eg. (A OR NOT B) AND (C XOR

D)), to extract the energy requires one to find the value of the bit from the input state ie. to

recapitulate the calculation on a second system. This requires an investment of an equivalent

amount of free energy into the second computation, so no gain is made in terms of recoverable

energy.

When a computation is reversible, we can recover all the free energy initially invested in the

system by completely reversing the operation of the computation. However, if we have performed

the RESTORE TO ZERO operation, we cannot recover the original free energy invested in the

system, we only recover the kT ln 2 we invested during the RESTORE TO ZERO operation. So

we see that it is only over the course of an entire cycle of computation that the RESTORE TO

ZERO operation has a thermodynamic cost. The objective of reversible computing is to reduce

the heat emitted during the operation of a computer, and reduce the amount of the free energy

invested into the calculation that cannot be recovered at the end, without losing the results of the

computation. We will now look at how this is achieved.
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9.1.2 Tidy classical computations

A reversible calculation may be defined as one which operates, upon an input state i and an

auxiliary system, prepared in an initial state Aux0 , to produce an output from the calculation

O(i), and some additional ’junk’ information Aux(i):

F : (i, Aux0) → (O(i), Aux(i))

in such a manner that there exists a complementary calculation:

F 0 : (O(i), Aux(i)) → (i, Aux0)

The existence of the ’junk’ information corresponds to a history of the intervening steps in the

computation, so allowing the original input to be reconstructed. A computation that did not keep

such a history, would be irreversible, and would have lost information on the way. The information

lost would correspond to an amount of free energy invested into the system that could not be

recovered.

However, Aux(i) is not generally known, being non-trivially dependant upon the input, i,

and so represents free energy that cannot be recovered. A general procedure for discovering the

complementary calculation F 0 can be given like this:

• Take all the logical operations performed in F , and reverse their operation and order.

As long as all the logical operations in F are reversible logic gates, this is possible. It is known that

the reversible Fredkin-Toffoli gates are capable of performing all classical logical operations, so it is

always possible to make a computation logically reversible. However, this is not immediately very

useful: although we could recover the energy by reversing the computation, we lose the output

O(i) in doing so.

Bennett[Ben73, Ben82] showed that a better solution was to find a different reverse calculation

F 00

F 00 : (O(i), Aux(i), AuxO) → (i, Aux0, O(i))

Now the only additional unknown information is O(i), which is simply the output we desired

(or extra information we needed to know). A general procedure for F 00, is:

• Copy O(i) into a further auxiliary system AuxO by means of a Controlled-NOT gate;

• Run F 0 on the original system.

This has also been shown to be the optimal procedure[LTV98, LV96] for F 00. We call such a

calculation TIDY. All classical reversible computations can be made TIDY.
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9.1.3 Tidy quantum computations

We will now show that when we try to apply this procedure to quantum computations, it fails.

This fact does not appear to be widely appreciated[BTV01, for example]. The problem is that the

Controlled-NOT gate does not act as a universal copying gate for quantum computers. In fact,

the universal copying gate does not exist, as a result of the ’no-cloning theorem’[WZ82, BH96b,

GM97, BBBH97, Mar01].

Clearly, in the case where the output states from a quantum computer are in a known orthogonal

set, then the quantum computation can be made tidy. In fact, for other reasons, having orthogonal

output states was initially taken as a requirement on a quantum computer, as it was deemed

necessary for reading out the output. This was suggestive not of a general quantum computation,

but of limited quantum algorithmic boxes: each connected by classical communication. However,

developments in quantum information theory have suggested that distributed quantum information

may be desirable - in particular, a more general conception of quantum computation may be

required which takes inputs from different sources, and/or at different times. In Figure 9.1 we see

an example of this - Alice performs some quantum computation, and stores the result of it in a

’quantum data warehouse’. At some later time, Bob takes part of these results as an input into

his own computation.

We are going to take our definition of a quantum computation2 as the operation:

UC : |i〉 |Aux0〉) → |O(i)〉 |Aux(i)〉

so that the output is always in a separable state (in other words, we regard the ’output’ of

the computation as the subsection of the Hilbert space that is interesting, and the ’auxiliary’ as

everything that is uninteresting. If the ’output’ were entangled with the ’auxiliary’ space, then

there would be additional information relevant to the ’output’, contained in the super-correlations

between ’output’ and ’auxiliary’ spaces). As any quantum computation must be performed by a

unitary operation, all quantum computers must be reversible. But are they TIDY?

If this model of computation is classical, then each time data is sent to the central database, the

local user can copy the data before sending it, and tidy up their computer as they go along. The

only energy commitment is: total input, plus stored data. At end of all processing - if it happens -

reconstruction of computation from stored input would allow tidying of any stored data no longer

needed. The difference between computation using distributed classical algorithmic boxes and a

single classical computation is a trivial distinction, as the computation may be tidied up along the

way. However, this distinction depends upon the classical nature of the information transferred

between the algorithmic boxes.
2There is further complication when entanglement enters the problem. When the output part of an entangled

state is non-recoverably transmitted, the loss of free energy in the remainder is always at least equal to the entropy

of the reduced density matrix of the output. However, this minimum loss of free energy requires knowledge of an

accurate representation of the resulting density matrix - which may not be possible without explicitly calculating

the output states.
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Figure 9.1: Distributed quantum computing

In our generalised quantum computation network, we can no longer guarantee that the oper-

ations performed at separate locations are connected by classical signals only. We now need to

generalise the definition of reversibility and tidiness to quantum computers.

Considering a general operation, unitarity requires that the inner products between different

input states and between the corresponding output states is unchanged by the computation. Re-

versibility must always hold. This leads to the conditions:

Reversible

〈i |j〉 〈Aux0 |Aux0〉 = 〈O(i) |O(j)〉 〈Aux(i) |Aux(j)〉

Tidy

〈i |j〉 〈Aux0 |Aux0〉 〈AuxO |AuxO〉 = 〈i |j〉 〈O(i) |O(j)〉 〈Aux0 |Aux0〉
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We can eliminate 〈Aux0 |Aux0〉 = 1 and 〈AuxO |AuxO〉 = 1, leaving only three cases.

Orthogonal Outputs

The output states are orthogonal set:

〈O(i) |O(j)〉 = δij

Reversibility requires the input states to be an orthogonal set |i〉 〈j | = 0, and the TIDY

condition will hold. This is not too surprising, as an orthogonal set of outputs can be cloned, and

so can be tidied using Bennett’s procedure.

Orthogonal Inputs

The input states are orthogonal set 〈i |j〉 = δij , but the output states are not.

To satisfy unitarity, this requires the auxiliary output states to be orthogonal.

〈Aux(i) |Aux(j)〉 = δij

There does exist a unitary operator (and therefore a computable procedure) for tidying the

computation, without losing the output. However, this tidying computation is not derivable from

the initial computation by Bennett’s procedure. If we were to clone the auxiliary output, and run

the reverse operation, we would lose the output, and be left with the ’junk’ ! Whether there is an

equivalent general procedure for obtaining F 00 is not known.

One obvious method is to examine the resulting auxiliary output states, construct a unitary

operator from

UG |Aux (i) , O (i)〉 = |Aux0, O (i)〉

and decompose UG into a quantum logic circuit. However, it is not clear whether the operator

can be constructed without explicitly computing each of the auxiliary output states - which may

entail running the computation itself, for each input, and measuring the auxiliary output basis.

Alternatively, examine the form of the auxiliary output (eg. (A OR NOT B) AND (C XOR D))

) and devise a logic circuit that reconstructs the input state from this. However, these simply

restates the problem: although some such circuit (or UG) must exist, is there a general procedure

for efficiently constructing it from only a knowledge of UC?

Non-orthogonal Inputs

The input states are a non-orthogonal set. This corresponds to Bob’s position in the quantum

distribution network of Figure 9.1.

If we look at the requirements for a tidy computation, this leads to:

〈O(i) |O(j)〉 = 1
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The output is always the same, regardless of the input! Obviously for a computation to be

meaningful, or non-trivial, at least some of the output states must depend in some way upon the

particular input state. So in this case we can say there are NO procedures F 00 that allow us to

tidy our output from F . To state this exactly:

There does not exist any non-trivial (|O(i)〉 6= |O(j)〉) computations of the form

G : |i〉 |Aux0〉 |AuxO〉 → |i〉 |Aux0〉 |O(i)〉

for which |i〉 |j〉 6= δij
3.

It should be made clear: this does NOT mean useful quantum computations of the form

F : |i〉 |Aux0〉 → |Aux(i)〉 |O(i)〉

do not exist if |i〉 j 6= δij - simply that such computations cannot be ’tidy’. For such compu-

tations, not only is the free energy used to store the auxiliary output unrecoverable, but also the

input state cannot be recovered, except through losing the output. For our distributed network,

this means that not only can Bob not ’tidy’ his computation, but he cannot restore Alice’s data

to the database.

9.1.4 Conclusion

We have now seen how Landauer’s Principle arises within computation. However we have seen

that, strictly speaking, the interpretation of Landauer’s Principle as:

To erase information requires one to do kT ln 2 work per bit upon the system

is not strictly justified. A better use of language would be

To erase information requires the loss of kT ln 2 free energy per bit

This applies both in the classical computation (where the information is measured in Shannon bits)

and the quantum computation (where information is measured in Schumacher bits). However, the

efficient tidying procedure due to Bennett is not applicable to all quantum computations. Some

quantum computations may be tidied, but only by using some other procedure, and some cannot

be tidied at all.

9.2 Thermodynamic and logical reversibility

We have clarified the significance of Landauer’s Principle for the thermodynamics of computation.

However, we found that the logical erasure step of the process is at a different stage to the stage

that involves the thermodynamic work of kT ln 2 per bit of information. Over the course of a

computational cycle, this is of little significance.
3It is interesting to note that the ’no-cloning’ theorem is a special case of this theorem.
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Nevertheless, when the interpreting the relationship between information and entropy, this is

very significant. We are now going to briefly examine the relationship between thermodynamic

entropy and logical information. We will find that the two concepts are quite distinct. There are

processes that are thermodynamically reversible but logically irreversible and processes that are

logically reversible but thermodynamically irreversible.

9.2.1 Thermodynamically irreversible computation

Modern computers gives off heat well in excess of that suggested by Landauer’s Principle. They

also use irreversible logic gates, such as AND/OR gates. However, these two facts are not related

in the manner that Landauer’s Principle would suggest.

While it is true that the development of quantum computing requires the heat dissipation of

computers to be minimised, the desktop PC does not use anything approximating this kind of

technology. The computer gives off heat simply because it is very inefficient.

Now, as Bennett has shown, any logically irreversible computation could be implemented on

a reversible computer. It would be perfectly possible, using existing technology, to construct a

computer which was based upon reversible logic gates. Such a computer would have to store more

bits in it’s memory while it was making it’s calculations, and would take approximately twice as

long to perform a calculation. The storing and reading of all these extra bits would mean that more

heat was given off than in a corresponding irreversible computer. With current technology, logically

reversible computers are thermodynamically less efficient than logically irreversible computers.

To put this another way: current computers are implemented using irreversible logic gates

because they are thermodynamically inefficient, rather than the reverse. In the limit, where the

dissipation per bit stored, analysed or transmitted, is significantly less than kT ln 2, a reversible

computer would be more thermodynamically efficient than an irreversible one. However, if the

technology is such that there is a dissipation per bit stored, transmitted or analysed of more than

kT ln 2 per bit, then a logically irreversible computer will be thermodynamically more efficient

than a reversible one, as it has to store less bits. With current technology, the desktop PC is far

more efficient if it is built from irreversible gates.

If we were to construct a desktop PC using reversible gates, they would still give off heat. In

short, they would be thermodynamically irreversible, while logically reversible. This demonstrates

the first main point of this Section: logical reversibility does not imply thermodynamic reversibility.

9.2.2 Logically irreversible operations

When we examined the Landauer Erasure, from the point of view of the Szilard Box, we found that

the logically irreversible stage was distinct from the stage at which work is performed upon the

system. From the point of view of efficient computation these distinctions are, perhaps, not very

important. However, when we are considering the relationship between information and entropy,

we will find this distinction becomes critical.
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We are now going to consider very carefully what we mean by logical reversibility, and demon-

strate that there are operations which are not logically reversible, but are thermodynamically

reversible. The computations will be taking place at the limiting efficiency, where no dissipation

takes place.

The information of the represented by the output states of the computation is

−
∑

a

pa ln pa

Now we must ask, where do the pa come from? If the computation is deterministic then, given a

specific input there must be a specific output, and the probabilities are all either zero or one. This

would imply that the information contained in the output is zero.

Naturally this is not the case. The computation will typically have a number of possible inputs,

and a corresponding number of possible outputs. For a reversible, deterministic computation there

will be a one-to-one correspondence between inputs and outputs, and so the pa in the output bits

are simply the probabilities of the corresponding inputs being fed into the computation.

This reminds us that the Shannon information is only defined over an ensemble of possible

states. To attempt to compare the Shannon information of a computation to the thermodynamic

entropy we must consider an ensemble of computations run with different input states.

Now let us consider how the logical reversibility comes into the computation. The computation

is fed an input state Ia. After successive computation it produces the output state Oa. The

Shannon information of the ensemble is the same at the end of the computation as at the start of the

ensemble. This is only natural, as we could equally well have considered the reverse computation.

This takes as it’s input the states Oa and produces the output states Ia.

The definition of the logically reversible computation is effectively one where, given the output

state Oa we can determine exactly which input state (Ia) was fed into the start of the computation.

Now, this is actually a much stronger condition that thermodynamic reversibility. For a process

to be thermodynamically reversible, all that is required is that the entropy of the system, including

auxiliaries, is the same before and after the process.

We can now show the simple procedure that is thermodynamically reversible but is not logically

reversible. Let us return to our Szilard Box, holding the output of some computation 4. We suppose

that the atom representing the outcome of the computation is located on the left with probability

pa and on the right with probability 1− pa.

1. Move the partition, isothermally, from the center to the location Y = 1− 2p, as described in

Section 9.1 above.

2. The partition is removed completely from the Szilard Box and the Box is left in contact with

a heat bath for a period of time long with respect to the thermal relaxation time.
4As there are only two possible outputs in this case we know there can have only been only two possible inputs. It

is a very simple computation we are considering! However, this argument can easily be generalised to computations

with any size of output.
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3. The partition is reinserted in the box at the location Y . The atom is again located upon the

left with probability pa and on the right with probability 1− pa.

4. The piston can now be isothermally returned to the center of the box, again in connection

to a work reservoir.

This process we have described fulfils all the criteria of thermodynamic reversibility.

In fact the thermodynamic description of the Szilard Box and the heat bath is exactly the same

at the end of this cycle as at the start. However, there is also clearly no correspondence between

the location of the atom at the end of the cycle and the location of the atom at the start of the

cycle. If we were to now reverse the cycle completely, and run the original computation in reverse,

there is no guarantee that the state we will end up with was the original input state. The process

is not logically reversible.

This demonstrates the second main point to this Section: that thermodynamic reversibility

does not imply logical reversibility.

9.3 Conclusion

We have looked at the relationship between information and entropy given by Landauer in some

more detail in this Chapter. This has lead to a better understanding of the thermodynamics of

computation but also has lead to a perhaps surprising conclusion:

• Logically reversible operations do not imply thermodynamic reversibility.

• Thermodynamically reversible operations do not imply logical reversibility.

This pair of conclusions undermines any attempt to connect Shannon information to Gibbs

entropy5 using Landauer’s Principle and computation. We will now see why this is so by considering

the conceptual basis of the two terms.

Shannon Information

Shannon information represents a situation where a system is in one of a number of states ρa, and

over an ensemble of such situations occurs with probability pa. Logically reversible computations

may be performed upon the system, where the state of the system undergoes one-to-one transfor-

mations, and it is always possible to reverse the computation and recover exactly the initial state.

For this to be possible, there must be no possibility of spontaneous transitions between the different

ρa states. The whole point of Shannon information is that it quantifies the knowledge gained, on

discovering that the state is the particular ρa, out of the ensemble of possible states.

When sending a signal, or performing a computation, any tendency of the signal states to

undergo transitions during transmission is ’noise’. This reduces the information that the receiver
5The arguments can be easily generalised to Schumacher information and Von Neumann entropy in quantum

systems.
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gains about the signal sent, even if the effect of the noise is to leave the density matrix over the

ensemble unchanged. If the system is allowed to completely randomise during transmission, so

that any input state ρa leads to the density matrix
∑

a paρa by the time it reaches the receiver,

then no information is conveyed.

Entropy

Thermodynamic entropy, on the other hand, is completely insensitive to such transitions, so long

as the ensemble density matrix is unchanged. In a thermodynamic system the states ρa occur with

probability pa. Assuming the system is in equilibrium at some temperature T , the system can be

left in contact with a heat bath at that temperature, and allowed to undergo random transitions

between all of the possible states. The final density matrix will be the same as at the start and

none of the thermodynamic properties of the system will have changed.

In complete contrast to Shannon information, the exact individual state ρa that the system

may be occupying has no significance at all.

Summary The fact that signal information and entropy share the same functional form, in both

quantum and classical cases, is remarkable. This means that many results derived in information

science will be applicable in thermodynamics, and vice versa. It also means that, as information

processing must take place on physical systems, there are limiting cases where the two terms

will appear to coincide. However, despite their functional similarity they refer to quite different

concepts. They are not the same thing.
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Chapter 10

Active Information and Entropy

In Chapters 4 and 8 we examined the arguments surrounding the Szilard Engine thought experi-

ment and the role of information in it’s resolution. We found that the intrusion of information into

the problem came about only because of the failure to follow through with the ensemble description

of a thermodynamic system when that ensemble includes intelligent beings. However, the reason

for that failure can be traced, not to a specific property of the intelligent beings, as such, but

rather a dissatisfaction with the ensemble description.

In this final Chapter we are going to briefly discuss this dissatisfaction with the ensemble

description. This has lead some to suggest that the quantum density matrix should be treated

as a description applying to an individual system, rather than a statistical ensemble of systems.

We will argue that the attempt to do this, rather than resolving the problem, simply imports the

quantum measurement problem into statistical mechanics.

However, we will then show that the Bohm approach to quantum theory may be used to resolve

this problem, by extending the concept of active information to apply to the density matrix. This

resolves the tension in thermodynamics between the statistical description and the individual

system. We will construct a very simple model suggesting how this approach could work, and how

it would be applied in the case of the interferometer and the Szilard Engine.

10.1 The Statistical Ensemble

The statistical ensemble,

ρ =
∑

a

pa |a〉 〈a |

as introduced in Chapters 2 and 6, is a description of the limiting case where an experiment is run

an infinitely large number of times, on a system that is prepared in such a manner that state |a〉
occurs with the relative frequency pa. As noted before, if the |a〉 do not form an orthogonal basis

then they do not diagonalise ρ, and the Schumacher information of the ensemble is less than the
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Shannon information

S[ρ] < −
∑

a

pa log2 pa

In reality, of course, there is no such limiting case. We never have an infinite number of

systems to act upon. The actual physical situation should then be represented by a finite ensemble

or assembly1. This is a sequence of systems, i, each in a particular state |ai〉. The correct way to

represent this would be in a product of the Hilbert spaces of the individual systems

|Ψ〉 〈Ψ | = |a1〉 〈a1 | ⊗ |a2〉 〈a2 | ⊗ |a3〉 〈a3 | ⊗ . . .

= Πi |ai〉 〈ai |

If there are N such systems, and the state |a〉 occurs na times, the relative frequency of |a〉 is

fa =
na

N

In the limit N →∞, then fa → pa
2.

The properties of an assembly differ from the statistical ensemble in a number of ways.

Ordered systems The individual systems occur in a particular order, and this order may display

a pattern in the occurrence of the particular states. It is generally assumed that the particular

state |a〉 is randomly selected with probability pa, and this will be unlikely to produce a pattern

in the appearance of the states. Such patterned assemblies are less likely to occur the larger the

value of N , and become a set of measure zero as N → ∞, assuming that the states are indeed,

probabilistically generated. However, for a finite system, there is still a non-zero probability of

such order occurring. Of course, if the states are not randomly generated (and it remains an open

problem of how to generate truly random states) then there may be an order in the assembly even

when N becomes infinitely large.

An example of such a pattern is the assembly of spin- 1
2 particles, where the even numbered

states are in the spin-up state, while the odd numbered states are in the spin-down state. This

represents information, or a pattern, within the assembly, that could be revealed by the appropriate

measurements. Such information is not represented in the statistical ensemble.

Joint measurements Measurements performed upon the system represented by the statistical

ensemble must be designed as a single POVM experiment. This experiment is repeated for each

system in turn, and the relative frequencies of the POVM outcomes, Bb, occur. As the value of N

gets large, these relative frequencies will approach the values

pb = Tr [Bbρ]

However, this is not the most efficient method for gathering information, given an assembly.
1The terminology assembly is due to Peres[Per93].
2Although the probability that the relative frequencies match the probabilities exactly, fa = pa, approaches zero

as N becomes large!
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Firstly, one has the classically available option to correlate the measurements performed upon

a given system to the outcomes of previous measurements. A given measurement is performed

upon system 1, then the outcome of this measurement is used to modify the experiment performed

upon system 2. The outcome of both measurements can be used to perform an experiment upon

system 3, and so forth. It is even possible, if one performs measurements that do not completely

collapse the state of the system measured (’weak’ measurements), to go back and perform further

measurements upon system 1, correlated to the outcomes of the measurements on system 2 and

3. Such a scheme is referred to as ’Local operations and classical communications’ or LOCC

measurements, as it can be implemented by a separate experimentalist acting with locally defined

operations upon their own system, and communicating with each other using classical information

obtained from their measurements.

Secondly, for quantum systems it is possible to improve upon LOCC measurements by perform-

ing a joint measurement upon the combined Hilbert space of the entire assembly[MP95, LPT98,

BDE98, LPTV99, TV99]. Although joint measurements have long been known to be required for

entangled systems, it has recently been discovered that such joint measurements can have surpris-

ing consequences[BDF+99, GP99, Mas00, for examples] even for systems constructed entirely out

of separable states, such as the assemblies considered here.

Entropy of the universe The issues considered above arise because the assembly |Ψ〉 〈Ψ | de-

scribes, not a statistical ensemble, but a single state albeit one with a very large number of

constituent subsystems. This remains the case even if N is allowed to become infinitely large3.

When we consider the entropy of the assembly, we find

S[|Ψ〉 〈Ψ |] = 0

as it is a pure state! Apparently, no matter how large we make the assembly, it will have an entropy

of zero. How do we reconcile the entropy of the assembly with the entropy of the ensemble?

We have seen before that, for any given state |a〉, there exists a unitary operator that will take

it to a reference state |0〉. A simple example of this is

Ua = |0〉 〈a |+ |a〉 〈0 |+
∑

α 6=0,a

|α〉 〈α |

If we use U1 to represent an operator acting on the Hilbert space of the first subsystem in the

assembly, then the combined unitary operation

UA = U1
a1
⊗ U2

a2
⊗ U3

a3
⊗ . . .

= ΠiU
i
ai

will convert the entire assembly to the state |0〉. The equivalent ensemble is now |0〉 〈0 |, which has

an entropy of zero. Thus, although there is no unitary operation which can act upon the ensemble
3Although if the universe is finite, then this will not be possible.
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to reduce it’s entropy, there do exist unitary operations that can act upon assemblies, that reduce

the entropy of their equivalent ensembles.

What we have seen here is the ’global entropy problem’. The universe does not occur as

a statistical ensemble, it occurs once only, and so has an entropy of zero. Naively, this might

suggest that we could exploit this to extract work from heat, somehow. This is not the case. To

implement an operation such as UA, we must apply the correct Ua to each i subsystem. This

requires a conditionally correlated system B to the original assembly A, and when we find the

equivalent ensemble to the joint system, the entropy we gain from the ensemble of the first system

is just the correlation entropy −S[A : B], in

S[A,B] = S[A] + S[B] + S[A : B]

The overall entropy S[A, B] of the joint ensemble remains constant4.

10.2 The Density Matrix

Although we have seen that the finite assembly does not imply we can violate the second law of

thermodynamics, we are still left with an uncomfortable situation. To express thermodynamic

properties, such as entropy and temperature, we must move from the physically real assembly to a

fictitious ensemble. This calls into question whether the thermodynamic properties are physically

real.

In addition to this, in Chapter 2 we saw that the statistics of measurement outcomes were

defined in terms of the ensemble. The density matrix of the ensemble represents all the information

that can be gained from a measurement5. There is no measurement that we can perform that

reveals the actual structure of the randomly generated assembly, as opposed to the ’fictitious’

ensemble, as the statistics of measurements performed upon such an assembly can only be expressed

in terms of the ensemble density matrix.

As we cannot discover which states actually went into composing a given density matrix, it

is surely a matter of choice as to whether we consider it to be constructed from individual pure

states, or not. Could we not abandon the idea that the density matrix is composed of actual pure

states? Can we treat the density matrix as the fundamental description of a state, and the pure

states as simply representing the special cases of zero entropy?

If we could consistently make this assumption, then the density matrix would no longer rep-

resent a ’fictitious’ ensemble and instead represents the actual state of a physically real system.

The thermodynamic quantities would then be undoubtedly physically real properties rather than
4The operation UA may also come about through some fundamentally random process, that fortuitously happens

to apply the correct operator to each system. Such a situation is a form of fluctuation, and the probability becomes

negligible as N becomes large.
5This may appear to contradict the joint measurements on the assembly considered above. This is not the case.

The statistics on the outcomes of these measurements turns out to be defined in terms of an ensemble of assemblies!
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statistical properties. This would significantly affect our discussion of Maxwell’s Demon and the

Szilard Engine.

This question has been raised recently by [AA98]. We will find that their suggestion is only valid

if the measurement problem is assumed solved, and their suggestion does not provide a solution

to this. On the contrary, we find instead that the general agreement that a measurement can be

said to have taken place when there has been a, for all practical purposes, irreversible loss of phase

coherence, can no longer be relied upon.

10.2.1 Szilard Box

Let us be very clear what is being suggested here. Aharanov and Anandan suggest taking the

density matrix as the fundamental expression of a single system with

the same ontological status as the wavefunction describing a pure state[AA98]

This is a very different situation to the statistical density matrices in Chapter 2. The density

matrices there do indeed represent an absence of knowledge of the exact state of the system, while

the system is actually in a definite state. To distinguish between the two cases, we will continue

to use ρ to represent statistical ensembles, but will now use % to represent the kind of ontological

density matrices suggested by [AA98].

The obvious situation to apply the ontological density matrix is to thermodynamic systems. If

we can do this, then the entropy

S[%] = Tr [% ln %]

can be associated with an individual system, rather then with a representative, or fictitious, en-

semble of equivalently prepared systems. If the system is in a thermal equilibrium then it also has

a temperature T , and a free energy F , expressed as physically real properties of the individual

system, in much the same manner as mass, or energy.

We will now consider the consequences of this by applying it to the Szilard Box. We start with

the one atom gas occupying the entire box, with a density matrix

%G0 =
1

ZG0

∑
n

e
¡ εn2

kTG |ψn〉 〈ψn |

as in Equation 6.4. However, this no longer represents a statistical mixture of |ψn〉 states, with the

atom in a particular, but unknown state. Rather, it represents the actual state of the individual

atom. Clearly the probability distribution of the particle throughout the box is given by

PG0(x) = 〈x | %G0 |x〉
=

1
ZG0

∑
n

e
¡ εn2

kTG |ψn(x)|2

=
1

ZG0

∑
n

e
¡ εn2

kTG Rn(x)2
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where we have used the polar decomposition ψn(x) = 〈x |ψn〉 = Rn(x)eıSn(x), to emphasise this is

now just a real probability distribution. If we follow standard quantum theory, this represents the

probability of finding the atom at a particular location x, if it is measured. It is important to be

clear that no possible measurement could distinguish between this point of view and the statistical

point of view, where the probability density PG0 represents the probability of finding an atom at a

location x only over an ensemble of measurements, as in each case the system would be in a pure

state.

If the partition is inserted into the center of the box, the density matrix splits into two

%G1 =
1

ZG1

∑

l

e
¡ ε

kTG
( 2l

1−p )2 (∣∣Ψλ
l

〉 〈
Ψλ

l

∣∣ + |Ψρ
l 〉 〈Ψρ

l |
)

=
1
2

(
%λ

G2 + %ρ
G2

)

Now we cannot interpret this as the atom being on one side or the other of the partition, any more

than we could interpret the wavefunction

1√
2

(Ψρ
l (x) + Ψρ

l (x))

as a statistical mixture. However, the reason for this is now entirely interpretational: we are no

longer assuming %G1 represents a statistical mixture as a matter of principle. Unlike interference

in the wavefunction, there are no observable consequences that tell us that the statistical mixture

is an untenable point of view.

10.2.2 Correlations and Measurement

Now let us suppose an auxiliary system (or Demon) attempts to observe the box to determine on

which side of the partition the atom lies. The auxiliary is originally in the state %0(Aux). We wish

an interaction so that, if the atom is actually on the left, the auxiliary state changes to %L(Aux),

and similarly %R(Aux) if the atom is actually on the right.

When we apply this interaction to the density matrix %G1, the joint system evolves into:

%2 =
1
2

(
%λ

G2 ⊗ %L(Aux) + %ρ
G2 ⊗ %R(Aux)

)

How are we to understand this correlated matrix? For a statistical ensemble ρ2, the situation

would be very clear. The ensemble represents the situation where the system is either

ρλ
G2 ⊗ ρL(Aux)

or

ρρ
G2 ⊗ ρR(Aux)

The demon is in a particular state, and observes the atom to be in the correlated state.

However, [AA98] cannot make use of this interpretation of the correlated density matrix. To

be consistent in the interpretation of a density matrix %2, the correlated state simply represents
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a joint probability density for finding the atom on one side and the demon observing it, when

a measurement is performed. For the measurement to be brought to a closure, and a particular

outcome be observed, we must change from the ontological density matrix %2 to the statistical

ensemble ρ2

%2 → ρ2

and no process has been suggested through which this change will occur.

Even if we include ourselves within the description, as Demon states, we do not produce a well

defined measurement procedure. Instead we simply include ourselves in the quantum uncertainty,

exactly as if we were Schrödinger cats. Nevertheless, we know, from our own experience, that

specific outcomes of measurements do occur. Even if we are able to interpret the density matrix as

a single system, at some point it must cease to be physically real and become a statistical ensemble.

We notice that this new problem of measurement is even more intractable than the old mea-

surement problem of quantum theory! It includes the old measurement problem, as a special case

involving pure states. The old problem consists of the fact that no unitary transformation exists

to convert the entangled pure state into the physically real density matrix. On top of this, we then

have the fact that, even where we do not start with pure states, there is no clear process by which

the physically real density matrix becomes a statistical ensemble.

In the case of the old measurement problem, there is at least general agreement on when a

measurement can, for all practical purposes, be said to have taken place. When there has been

a practically irreversible loss of phase coherence between two elements of a superposition, the

wavefunction may be replaced by

1
2

(|Ψρ
l 〉 〈Ψρ

l |+ |Ψρ
l 〉 〈Ψρ

l |)

which is then interpreted as a statistical mixture ρ.

Now, even when the phase coherence has gone, we may still be left with an ontological density

matrix %. A further process appears necessary to complete the measurement, but this further

process, unlike the loss of phase coherence, has no observable consequences6!

10.3 Active Information

We saw in Chapter 3 how the Bohm approach to quantum theory resolves the measurement

problem. In addition to the wavefunction, there is an actual trajectory (whether ’particle’ or

’center of activity’), and it is the location of the trajectory within the wavepacket that determines

which of the measurement outcomes is realized.

We now find a similar interpretational problem in thermodynamics. We would like to be able

to apply thermodynamic concepts to individual systems. However, the only way we know how to
6This is not strictly correct. Without such a process, measurements cannot be said to actually have outcomes.

The fact that measurements actually do have outcomes is in itself, therefore, an observable consequence of the

existence of this process.
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do this would be to interpret the density matrix as applying to individual systems, and this leads

us into a similar dilemma as with the quantum measurement problem 7.

We can now consider an obvious resolution to both problems: if the density matrix can be a

description of an individual system, rather than an ensemble, can we construct a Bohm trajectory

model for it, and will this resolve the problem in [AA98]’s approach? By explicitly developing

a simple and tentative model of Bohm trajectories for a density matrix, we will find the answer

appears to be, yes.

Firstly we must understand how we can construct a Bohm trajectory model for a density

matrix. This will not be the statistical mechanics suggested by [BH96a], which constructs statistical

ensembles in the manner of ρ above. Instead we will apply the formalism recently developed by

Brown and Hiley[BH00], who develop the use of the Bohm approach within a purely algebraic

framework.

10.3.1 The Algebraic Approach

In [BH00], it is suggested that Bohm approach can be generalised to the coupled algebraic equations
8:

∂%

∂t
= ı [%,H]¡ (10.1)

%
∂Ŝ

∂t
= −1

2
[%, H]+ (10.2)

Equation 10.1 is simply the quantum Liouville equation, which represents the conservation of

probability, and reduces to the familiar form of

∂R(x)2

∂t
+∇ · j = 0

where j is the probability current

j = R(x)2
∇S(x)

m

in the case where the system is in a pure state % = |ψ〉 〈ψ | and 〈x |ψ〉 = R(x)eıS(x)

The second equation is the algebraic generalisation of the quantum Hamilton-Jacobi, which

reduces to Equation 3.1 for pure states. The operator Ŝ is a phase operator, and this equation

can be taken to represent the energy of the quantum system. The application of this to the

Aharanov-Bohm, Aharanov-Casher and Berry phase effects is demonstrated in [BH00].

[BH00] are concerned with the problem of symplectic symmetry, so their paper deals mainly

with constructing momentum representations of the Bohm trajectories, for pure states, and does
7Although there is no equivalent to interference effects or Bell Inequality violations.
8

[A, B]− = AB −BA

[A, B]+ = AB + BA
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not address the issue of when the density matrix is a mixed state. Here we will be concentrating

entirely upon the mixed state properties of the density matrix, and so we will leave aside the

questions of symplectic symmetry and the interpretation of Equation 10.2. Instead we will assume

the Bohm trajectories are defined using a position ’hidden variable’ or ’beable’, and will concentrate

on Equation 10.1.

The Brown-Hiley method, for our purposes, can be summarised by the use of algebraic proba-

bility currents

JX = ∇P (%H)

JP = ∇X (%H)

for which

ı
∂%

∂t
+ [JX , P ]¡ − [JP , X]¡ = 0

To calculate trajectories in the position representation (which Brown and Hiley refer to as con-

structing a ’shadow phase space’) from this we must project out the specific location x, in the

same manner as we project out the wavefunction from the Dirac ket ψ(x) = 〈x |ψ〉

ı
∂ 〈x | % |x〉

∂t
+ 〈x | [JX , P ]¡ |x〉 − 〈x | [JP , X]¡ |x〉 = 0

The second commutator vanishes and the first commutator is equivalent to the divergence of a

probability current

∇x · J(x) = 〈x | [JX , P ]¡ |x〉

leading to the conservation of probability equation

∂P (x)
∂t

+∇x · J(x) = 0

To see the general solution to this, we will note that the density matrix of a system will always

have a diagonal basis |φa〉(even if this basis is not the energy eigenstates), for which

% =
∑

a

wa |φa〉 〈φa |

Note, the wa are not interpreted here as statistical weights in an ensemble. There are physical

properties of the state %, with a similar status to the probability amplitudes in a superposition of

states.

We can put each of the basis states into the polar form

Ra(x)eıSa(x) = 〈x |φa〉

so the probability density is just

P (x) =
∑

a

waRa(x)2

The probability current now takes the more complex form

J(x) =
∑

a

waRa(x)2∇Sa(x)
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So far we have not left standard quantum theory9. We may do this by now constructing

trajectory solutions X(t), in the manner of the Bohm approach, by integrating along the flow lines

of this probability current[BH93, Hol93, BH00]. This leads to

m
∂X(t)

∂t
=

J(X(t))
P (X(t))

=
∑

a waRa(X(t))2∇Sa(X(t))∑
a waRa(X(t))2

(10.3)

Notice the important fact that, when the density matrix represents a pure state, this reduces to

exactly the Bohm interpretation in Chapter 3.

The most notable feature of Equation 10.3 is that the constructed particle velocity is not the

statistical average of the velocities 〈V (t)〉, that would have been calculated from the interpretation

of ρ =
∑

a wa |φa〉 〈φa | as an ensemble:

〈V(t)〉 =
∑

a

wa∇Sa(X(t))

This should not be too surprising however. We are interpreting the density matrix as providing

the activity of information necessary to guide the particle motion. All the elements of the density

matrix are physically present, for a particle at X(t), and each state |φa〉 contributes a ’degree of

activity’, given by Ra(x)2 to the motion of the trajectory, in addition to the weighting wa. If

a particular state has a probability amplitude that is very low, in a given location, then even if

its weight wa is large, it may make very little contribution to the active information when the

trajectory passes through that location.

Let us consider this with the simple example of a system which has two states |φa〉 and |φb〉.
The probability equations are

P (x) = waRa(x)2 + wbRb(x)2

J(x) = waRa(x)2∇Sa(x) + wbRb(x)2∇Sa(x)

Let us suppose that the two states |φa〉 and |φb〉 are superorthogonal. This implies φa(X)φb(X) ≈ 0

for all X. This must also hold for the probability amplitudes Ra(X)Rb(X) ≈ 0. If the particle

trajectory X(t) is located in an area where Ra(X) is non-zero, then now the value of Rb(X) ≈ 0.

The probability equations become

P (X) ≈ waRa(X)2

J(X) ≈ waRa(X)2∇Sa(X)

and so the particle trajectory

m
∂X(t)

∂t
≈ ∇Sa(X(t))

follows the path it would have taken if system was in the pure state |φa〉. In this situation, where

there is no overlap between the states, then the Bohm trajectories behave in exactly the same

manner as if the system had, in fact, been in a statistical ensemble.
9The probability current is a standard part of quantum theory, as it’s very existence is necessary to ensure the

conservation of probability.
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Now, if we make the assumption necessary to the Bohm interpretation, that the initial co-

ordinate of the particle trajectory occurs at position X(0), with a probability given by P (X(0)),

it is apparent that the trajectories, at time t will be distributed at positions X(t) with probability

P (X(t)). We have therefore consistently extended the Bohm approach to treat density matrices

(and therefore thermal states) as a fundamental property of individual systems, rather than sta-

tistical ensembles. As we know that the statistics of the outcomes of experiments can be expressed



We see, exactly as in the pure state situation, that the evolution of one particle trajectory is

dependant upon the instantaneous location of the second particle, and vice versa.

The first special case to consider is when the density matrices are uncorrelated

%1,2 = %1 ⊗ %2

The probability equations reduce to the form

P (x1, x2) = P (x1)P (x2) =
∑

a

waRa(x1)2
∑

b

wbRb(x2)2

J(x1, x2) = P (x2)J1(x1) + P (x1)J2(x2)

where

J1(x1) =
∑

a

waRa(x1)2∇x1Sa(x1)

J2(x2) =
∑

b

wbRb(x2)2∇x2Sb(x2)

The resulting trajectories

m
∂X1(t)

∂t
=

J1(X1(t))
P (X1(t))

m
∂X2(t)

∂t
=

J2(X2(t))
P (X2(t))

show the behaviour of the two systems are completely independant.

Now let us consider a correlated density matrix

%1,2 =
1
2

(|φaχa〉 〈φaχa |+ |φbχb〉 〈φbχb |)

where the |φ〉 states are for system 1 and the |χ〉 states are for system 2. The polar decompositions

Ra(x1)Ra(x2)eıSa(x1)+Sa(x2) = 〈x1, x2 |φaχa〉
Rb(x1)Rb(x2)eıSb(x1)+Sb(x2) = 〈x1, x2 |φbχb〉

lead to probability equations

P (x1, x2) =
1
2

(
Ra(x1)2Ra(x2)2 + Rb(x1)2Rb(x2)2

)

J(x1, x2) =
1
2

(
Ra(x1)2Ra(x2)2(∇x1Sa(x1) +∇x2Sb(x2))

+ Rb(x1)2Rb(x2)2(∇x1Sb(x1) +∇x2Sb(x2))
)

The trajectories, X(t), are then given by

m
∂X1(t)

∂t
=

Ra(X1(t))2Ra(X2(t))2∇X1Sa(X1(t)) + Rb(X1(t))2Rb(X2(t))2∇X1Sb(X1(t))
Ra(X1(t))2Ra(X2(t))2 + Rb(X1(t))2Rb(X2(t))2

m
∂X2(t)

∂t
=

Ra(X1(t))2Ra(X2(t))2∇X2Sa(X2(t)) + Rb(X1(t))2Rb(X2(t))2∇X2Sb(X2(t))
Ra(X1(t))2Ra(X2(t))2 + Rb(X1(t))2Rb(X2(t))2
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Now in general this will lead to a complex coupled behaviour. However, if either of the states |φ〉
or |χ〉 are superorthogonal, then relevant co-ordinate, X1 or X2 respectively, will be active for only

one of the Ra or Rb states. For example, suppose the |χ〉 states are superorthogonal

Ra(X2)Rb(X2) ≈ 0

For a given location of X2, only one of these probability densities will be non-zero. If we suppose

this is the |χa〉 wavepacket, then Rb(X2)2 ≈ 0. The trajectory equations become

m
∂X1(t)

∂t
=

Ra(X1(t))2Ra(X2(t))2∇X1Sa(X1(t))
Ra(X1(t))2Ra(X2(t))2

= ∇X1Sa(X1(t))

m
∂X2(t)

∂t
=

Ra(X1(t))2Ra(X2(t))2∇X2Sa(X2(t))
Ra(X1(t))2Ra(X2(t))2

= ∇X2Sa(X2(t))

Both trajectories behave as if the system was in the pure state |φaχa〉. If the location of X2 had

been within the |χb〉 wavepacket, then the trajectories would behave exactly as if the system were

in the pure state |φbχb〉. The trajectories, as a whole, behave as if the system was in a statistical

mixture of states, as long as at least one of the subsystems has superorthogonal states.

The Bohm approach, by adding the trajectories to the quantum description, is able to avoid

the new measurement problem of the density matrix above, by exactly the same method as it

avoids the old measurement problem of quantum theory. The loss of phase coherence does not

play a fundamental role in the Bohm theory of measurement. It is the superorthogonality that is

important, and the principles of active and passive information implied by this. These principles

carry directly over into the density matrix description. It is a simple matter to generalise the

above arguments to a general N-body system, or to consider states where the diagonalised density

matrix involves entangled states.

We will now briefly apply the analysis above to the Interferometer considered in Chapter 3 and

the Szilard Engine in Chapters 4 to 8.

Interferometer

The experimental arrangement we will now be considering is not, strictly speaking, the interfer-

ometer in Figure 3.1. In that arrangement we send a pure states into a beam splitter, creating

a superposition in the arms of the interferometer, and an interference pattern emerges in the re-

gion R. Instead we will be considering situations where the atomic state entering the arms of the

interferometer is the mixed state

1
2

(|φu(x, t1)〉 〈φu(x, t1) |+ |φu(x, t1)〉 〈φu(x, t1) |)

No interference effects are expected in the region R.

We will describe the Bohm trajectories for this in the cases where:

1. The mixed state is a physically real density matrix %;
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2. The mixed state is a statistical mixture ρ;

3. The mixed state is a physically real density matrix, and a measurement of the atomic location

is performed while the atom is in the interferometer.

Physically real density matrix While the atom is in the arms of the interferometer, the

wavepacket corresponding to |φu〉 〈φu | and that corresponding to |φd〉 〈φd | are superorthogonal.

The trajectories in the arms of the interferometer are much as we would expect. However, when

the atomic trajectory enters the region R the previously passive information from the other arm

of the interferometer becomes active again.

No interference fringes occur in the region R, and if phase shifters are placed in the arms of

the interferometer, their settings have no effect upon the trajectories10. However, the trajectories

do change in R. The symmetry of the arrangement, and the ’no-crossing principle’ for the flow

lines in a probability current, ensures that no actual trajectories can cross the center of the region

R. The Bohm trajectories follow the ’surrealistic’ paths similar to those in Figure 3.4, even in the

absence of phase coherence between the two arms of the interferometer.

Statistical Ensemble We have seen that, even in the absence of phase coherence, the Bohm

trajectories for the density matrix show the surrealistic behaviour. Does this represent an un-

acceptable flaw in the model? To answer this, we now consider the situation where the density

matrix is a statistical ensemble of pure states. This situation should more properly be described,

for the point of view of the Bohm approach, as an assembly.

First consider the assembly

ρ1 = Πi |φai〉 〈φai |

where ai = u or d with a probability of one-half. As the assembly consists entirely of product

states, the behaviour in each case is independant of the other cases.

If the state is |φu〉 〈φu |, then the trajectories pass down the u-branch, and go through the

interference region without deflection. Similarly, systems in the |φd〉 〈φd | state pass down the d-

branch and are undeflected at R. These trajectories are what we would expect from an incoherent

mixture.

However, now let us consider the assembly

ρ2 = Πi |φbi〉 〈φbi |

where bi = + or − occur with equal probability and

|φ+〉 =
1√
2

(|φu〉+ |φd〉)

|φ¡〉 =
1√
2

(|φu〉 − |φd〉)

10To observe interference fringes we would need a density matrix that diagonalises in a basis that includes non-

isotropic superpositions of |φu〉 and |φd〉.
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This forms exactly the same statistical ensemble. Now, however, in each individual case there

will be interference effects within the region R, it is just that the combination of these effects will

cancel out over the ensemble. If we were to measure the state in the (+,−) basis, then we would

be able to correlate the measurements of this to the location of the atom on the screen and exhibit

the interference fringes. The Bohm trajectories for the assembly ρ2 all reflect in the region R and

display the supposed ’surrealistic’ behaviour.

There are no observable consequences of the choice of the different assemblies to construct

the statistical ensemble11. Consequently, if we are only given the density matrix of a statistical

ensemble, we are unable to say which assembly it is constructed from and cannot simply assume

that the underlying Bohm trajectories will follow the pattern in Figure 3.2. It is only legitimate to

assume the trajectories will pass through the interference region undeflected if we know we have

an assembly of |φu〉 and |φd〉 states, in which case the Bohm trajectories agree. Thus we conclude

the behaviour of the trajectories for the physically real density matrix cannot be ruled out as

unacceptable on these grounds.

Measuring the path Finally, we consider what happens when we have the physically real

density matrix

% =
1
2

(|φu(x, t1)〉 〈φu(x, t1) |+ |φu(x, t1)〉 〈φu(x, t1) |)

and we include a conventional measuring device in the u-path. The measuring device starts in the

state |ξ0〉. If the atom is in the state |φu〉, the measuring device moves into the state |ξ1〉. The

states |ξ0〉 and |ξ1〉 are superorthogonal.

If we now apply the interaction to the initial state

%⊗ |ξ0〉 〈ξ0 |

the system becomes the correlated density matrix

1
2

(|φuξ1〉 〈φuξ1 |+ |φuξ0〉 〈φuξ0 |)

As we saw above, as the measuring device states are superorthogonal, the system behaves exactly

as if it were the statistical ensemble. This is true even when the atomic states enter the region R.

The Bohm trajectories of the atom pass undeflected through in the manner of Figure 3.2.

We conclude that the Bohm trajectories for the density matrix cannot be considered any more

or less acceptable than the trajectories for the pure states.

The Szilard Box

We saw in Section 10.2 that the atom in the Szilard Box can be represented by the physically real

density matrix

%G0 =
1

ZG0

∑
n

e
¡ εn2

kTG |ψn〉 〈ψn |

11It is interesting to note that if we were to measure the assembly ρ1 in the (+,−) basis we would still obtain

interference fringes!
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The probability density calculated from this is

PG0(x) =
1

ZG0

∑
n

e
¡ εn2

kTG Rn(x)2

However, the probability current is zero, (JG0(x) = 0). As a result, the Bohm trajectories for

the atom in the box represent it as stationary. This should not be considered too surprising. A

similar result occurs for pure states, when the system is in an energy eigenstate. The state %G0 is

an equilibrium state. While we have a classical picture of such a state as a fluctuating system, in

the quantum case we see the equilibrium state is simply stationary!

In reality, of course, the box will be weakly interacting with the environment. This weak inter-

action will perturb the states of the joint system, and joint density matrix will not be diagonalised

exactly in the basis of the joint Hamiltonian. The result will be a complicated correlation of move-

ments of the atom and the environmental degrees of freedom that, in the long run, may produce

an equivalent effect to the classical picture of dynamic fluctuations.

However, we will ignore this potential for environmentally induced fluctuation. The potential

barrier is inserted into the box and the density matrix divides into

%G2 =
1
2

(
%λ

G2 + %ρ
G2

)

Now the atomic trajectory is actually located on one side or the other of the potential barrier. The

information in the other half of the thermal state is rendered passive.

When we insert the moveable piston into the box, the joint density matrix moves into the

correlated state

%3(Y ) =
1
2

(
%λ

G6(Y )⊗ |Φ(Y )〉 〈Φ(Y ) |+ %ρ
G6(−Y )⊗ |Φ(−Y )〉 〈Φ(−Y ) |)

The changing boundary conditions and the interaction between the piston and gas ensures that the

%G6⊗|Φ〉 〈Φ | states are not diagonalised in eigenstates of the joint Hamiltonian (we considered this

in Section 5.3), so now the Bohm trajectories can move. If the atomic trajectory was located on

the left of the partition, then only the lefthand branch of the state is active. The piston trajectory

moves to the right, and the atomic trajectory also moves to the right, as the Bohm trajectories of

the atom spread out to fill the expanding space.

As the piston states move, the %λ
G6 and %ρ

G6 states start to overlap. However, this can only

happen once the piston states have become superorthogonal. The information in the passive atomic

state does not become active again.

So the Bohm trajectories for the thermal states, in this case, confirm the naive classical picture

of the Szilard Box. The atom is indeed located on one side of the partition, and the piston can

move in the opposite direction, extracting heat from the expansion of the gas. However, as we have

seen, the Engine cannot violate the second law of thermodynamics. We explained this in Chapter 8

from the unitarity of the evolution. The unitary operator must be defined upon the entire Hilbert

space. This so constrains the evolution that the Engine cannot operate without either error or an

input of work from outside (as a heat pump).
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From the point of view of the Bohm theory, the need to define the unitary operation upon the

entire Hilbert space is not an abstract issue. The portion of the Hilbert space that is not active is

not empty anymore. It is filled with the physically real, but passive, alternate state. The passive

information in this state cannot be abandoned, anymore than the passive information from the

second arm of the interferometer can be abandoned. Attempting to reset the piston at the end of

the cycle fails because the previously passive information, representing the piston state that moved

to the left in our example above, is still physically present, and will combine with the active state

containing the actual piston trajectory.

What of the Szilard paradox? If the atom and piston have physically real trajectories, does

the correlation reduce the entropy? The answer is that the entropy, as defined for the complete

density matrix, does not decrease. On the other hand, the entropy of the active part of the density

matrix can go down, and does when a correlated measurement takes place. This does not represent

a conceptual problem, however, as the passive part of the density matrix no longer represents a

fictitious possibility that did not occur. Instead it represents the physically real thermal state,

which just happens to be passive at this point in time.

10.4 Conclusion

The classical conception of information, given by the Shannon measure, represents the ignorance

about an actually existing property of a system. As measurements are performed, the state of

the observer becomes correlated to the state of the observed system. The correlation, or mutual

information, represents the increase in knowledge the observer has about the actual state of the

system. With sufficiently refined measurements the observer can gain a perfect knowledge of the

exact state of the system and over an ensemble of systems, can discover the ensemble probability

distribution.

In classical statistical mechanics, the Gibbs entropy shares the same functional form as the

Shannon information measure. This can lead to the argument that entropy is simply the lack of

information about the system. Such an argument, however, directly implies that, by performing

a measurement upon the system, it’s entropy can be reduced. The flaw in this argument is

that it fails to include the observer as an active participant in the system. This inclusion is

necessary to understand why the second law of thermodynamics cannot be broken by Maxwell’s

Demon. However, this inclusion now makes it hard to interpret entropy as a lack of information.

Originally, we described the entropy of the system as the lack of information possessed by the

observer. However, as we now have to include the entropy of the observer in the system, it is

unclear whose lack of information we are supposed to attribute this to. It can no longer be the

observer, who is fully aware of which state he is in.

With quantum theory, the situation becomes more complex. The Schumacher information

measure shares the same form as the von Neumann entropy. However, except in the case of
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communication, where a receiver is in possession of a priori knowledge of which signal states

are being sent, it is no longer clear what the ’information’ is referring to. It cannot be simply

assumed that the measurement reveals a pre-existing property of the measured system. A given

density matrix may be formed from many different combinations of signal states, and there is no

measurement procedure that is able to uncover which is the correct one. When the system is in

a superposition of states, such as in the interferometer, the information gathering measurement

plays an active role in the creation of the phenomena it is intended to measure.

It has been suggested that the ’wavefunction collapse’ involved in the measurement process

is a necessary part of understanding the problem of Maxwell’s Demon. However, we have shown

that the linearity of quantum mechanics proves the opposite: wavefunction collapse plays no role

in Szilard’s Engine. The demon, in fact, need perform no information processing at all and still

fulfil it’s function as an auxiliary system. Nevertheless, the conceptual problem remains, that the

thermodynamic properties are possessed only by the fictitious ensemble and not by the actual

physical system.

We now turn to the concept of active information in quantum theory. This suggests that, in

addition to the wavefunction, there is a particle trajectory, or center of activity. The Hamilto-

nian encodes the information about the system into the evolution of the wavefunction, and this

information guides the particle trajectory. When a measurement occurs, the information in the

unobserved outcomes is no longer active, through the non-local correlation between the system and

the measuring device. The information considered here is not simply a static correlation between

two systems, but is a dynamic principle, actively organising the behaviour of the system.

By extending the Bohm interpretation to cover density matrices, we showed it was possible

to consistently treat the density matrix as a property, not of an ensemble, but of an individual

system. The temperature and entropy of thermal systems can then be regarded as physically real

attributes. Again, when a measurement occurs, the information in unobserved outcome is passive,

but still physically real. Although the entropy of the active branch of the system may be reduced,

the total entropy is constant.

It is interesting to note that it is only because the Bohm interpretation is a no-collapse in-

terpretation that this is possible. Suppose we assumed the density matrix was physically real,

rather than an ensemble, and applied a wavefunction collapse interpretation. As we performed

our measurements, the density matrix would rapidly become converted into a statistical ensemble

again. We would be forced to say that the physical entropy of the system was decreasing. The

total entropy would again become a property only of the statistical ensemble.

In both statistical mechanics and quantum measurement it is necessary to include the ob-

server as an active participant in the system if we are to avoid apparent paradoxes. The Bohm

interpretation and activity of information provides a unified framework for understanding both.

249



Appendix A

Quantum State Teleportation

Quantum state teleportation1 has focused attention on the role of quantum information. Here we

examine quantum teleportation through the Bohm interpretation. This interpretation introduced

the notion of active information and we show that it is this information that is exchanged during

teleportation. We discuss the relation between our notion of active information and the notion of

quantum information introduced by Schumacher.

A.1 Introduction

The recent discovery of quantum state teleportation [BBC+93] has re-focused attention on the

nature of quantum information and the role of quantum non-locality in the transfer of information.

Developments in this area have involved state interchange teleportation [Mou97], as well as multi-

particle entanglement swapping [BKV97], and position/momentum state teleportation [Vai94].

Although these effects arise from a straight forward application of the formalism, the nature of the

quantum information and its transfer still presents difficulties. Attempts to address the issue from

the perspective of information theory [HH96, AC95] and without invoking wave function collapse

[Bra96] have clarified certain aspects of this process but problems still remain.

In order to obtain a different perspective on these phenomena we first review the salient fea-

tures of the Bohm interpretation that are of direct relevance to these situations [Boh52a, Boh52b,

BH93, Hol93, Bel87], before applying its techniques to the specific example of spin teleportation.

One of the advantages of using this approach in the present context is that to account for quan-

tum processes it is necessary to introduce of the notion of ‘active’ information. This notion was

introduced by Bohm & Hiley [BH93] to account for the properties of the quantum potential which

cannot be consistently regarded as a mechanical potential for reasons explained in Bohm & Hiley

[BH93]. There is also the added advantage that the approach gives a clear physical picture of the

process at all times, and, therefore provides an unambiguous description of where and how the
1The material in this Appendix originally appeared in [HM99] as a joint paper with B J Hiley.

250



‘quantum information’ is manifested. In this paper we will discuss how the three notions of active,

passive and inactive information are of relevance to the teleportation problem.

A.2 Quantum Teleportation

The basic structure of quantum teleportation can be expressed using three spin- 1
2 particles, with

particles 2 and 3 initially in a maximally entangled EPRB state, and particle 1, in an unknown

superposition:

Ψ1 = (a| ↑〉1 + b| ↓〉1)(| ↑〉2| ↓〉3 − | ↓〉2| ↑〉3)/
√

2

By introducing the ‘Bell states’

β
(ij)
1 = (| ↑〉i| ↑〉j + | ↓〉i| ↓〉j)/

√
2 β

(ij)
2 = (| ↑〉i| ↑〉j − | ↓〉i| ↓〉j)/

√
2

β
(ij)
3 = (| ↑〉i| ↓〉j + | ↓〉i| ↑〉j)/

√
2 β

(ij)
4 = (| ↑〉i| ↓〉j − | ↓〉i| ↑〉j)/

√
2

we can re-write Ψ1 as

Ψ2 = (β(12)
1 [−b| ↑〉3 + a| ↓〉3]+ β

(12)
2 [+b| ↑〉3 + a| ↓〉3]+

β
(12)
3 [−a| ↑〉3 + b| ↓〉3]+ β

(12)
4 [−a| ↑〉3 − b| ↓〉3])/2

If we now measure the Bell state of particles 1 and 2, and communicate the result to the recipient

of particle 3 who will,using that information, then perform one of the local unitary operations on

particle 3 given below

U1 =


 0 1

−1 0


 , U2 =


 0 1

1 0




U3 =


 −1 0

0 1


 , U4 =


 −1 0

0 −1


 .

In this way we have disentangled particle 3 from particle 2 and produced the state (a| ↑〉3 + b| ↓〉3)
on particle 3. Thus the information represented by [a,b] has been perfectly ‘teleported’ from

particle 1 to particle 3, without our having measured a or b directly. Furthermore, during the

transfer process we have only passed 2 classical bits of information (corresponding only to the

choice of U) between the remote particles. Note that as ’a’ and ’b’ are continuous parameters, it

would require an infinite number of classical bits to perfectly specify the [a,b] state. This ability

to teleport accurately has been shown to be critically dependant upon the degree of entanglement

of particles 2 and 3 [HH96, Pop94].

We may note that in the Bell state expansion, the information signified by the coefficients [a,b]

appears on the particle 3 spin states before any actual measurement has taken place (although this

information is encoded in a different way for each Bell state). What are we to make of this?

It would seem absurd to assume that the information described by a and b was already attached

to particle 3 as, at this stage, particle 1 could be any other particle in the universe. Indeed all
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that has happened is that Ψ1 has been the re-written in a different basis to give Ψ2. Clearly this

cannot be regarded as an actual physical effect.

Following Heisenberg [Hei58] and Bohm [Boh51], we can regard the wave function as describing

potentialities. At this stage Ψ2 describes the potentiality that particle 3 could carry the [a,b]

information that would be actualised during the measurement. However, here we have a problem

as Braunstein[Bra96] has shown that a collapse of the wavefunction (the usual mechanism by which

such potentialities become actualised) is unnecessary to the description of quantum teleportation,

by including the Bell state measuring device within the quantum formalism. Using this description,

we find that the attachment of the [a,b] information to particle 3, after the Bell state interaction, is

the same as in the Ψ2 expansion prior to the interaction. While this is clearly necessary to maintain

the no-signalling theorem, it leaves ambiguous the question of whether the [a,b] information has

been transferred to particle 3, at this stage, or not.

To resolve these issues, we need to give a clearer meaning to the nature of the information

contained in [a,b] and to understand how and when this information becomes manifested at particle

3. We now turn to the Bohm interpretation (Chapter 3) to provide some new insights into these

questions.

A.3 Quantum State Teleportation and Active Information

In order to examine how the idea of active and passive information can be used in quantum

teleportation, we must explain how spin is discussed in the Bohm interpretation. There have been

several different approaches to spin [BH93, Hol88, Alb92], but this ambiguity need not concern us

here as we are trying to clarify the principles involved. Thus for the purpose of this article we will

adopt the simplest model that was introduced by Bohm, Schiller and Tiomno [BST55, DHK87].

We start by rewriting the polar decomposition of the wave function as Ψ = ReiSΦ where Φ is a

spinor with unit magnitude and zero average phase. If we write:

Φ =




r1e
is1

r2e
is2

...

rneisn




where n is the dimension of the spinor space, then
∑

i si = 0 and
∑

i(ri)2 = 1. The many-body

Pauli equation then leads to a modified quantum Hamilton-Jacobi equation given by:

∂S

∂t
− iΦy ∂Φ

∂t
= −

∑

i

(
p2

i

2m
+ Qi + 2µiB.si

)

with a momentum pi = ∇iS + Φy∇iΦ, a quantum potential Qi = 1
2m (−∇2

i R + ∇iΦy∇iΦ +

(Φy∇iΦ)2). B is the magnetic field and µi is the magnetic dipole moment associated with particle

i. We can, in addition, attribute a real physical angular momentum to each particle i given by

si = 1
2ΨyσiΨ, where σi are the Pauli matrices operating solely in the spinor subspace of particle i.
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The information contained in the spinor wave function is again encoded in the quantum po-

tential, so that the trajectory of the particle is guided by the evolution of the spinor states, in

addition to the classical interaction of the B field with the magnetic dipole moment of the parti-

cle. Contracting the Pauli equation with Ψyσi leads the equation of motion for the particle i spin

vector:
dsi

dt
= Ti + 2µiB× si

where Ti is a quantum torque. The k components of the torque are given by

[Ti]k =
∑

j

1
2ρmj

εklm{[si]l[∇j ]n(ρ[∇j ]n[si]m) + slr[∇j ]n(ρ[∇j ]nsmr)}

where ρ = R2 and sij is the non-local spin correlation tensor formed from ΨyσiσjΨ. Equations of

motion for these tensors can be derived by contracting the Pauli equation with Ψyσiσj , and simi-

larly for higher dimension correlation tensors. Detailed application of these ideas to the entangled

spin state problem has been demonstrated in Dewdney et al. [DHK87].

To complete the description of the particles, we must attach position wave functions to each

of the particles. We do this by assuming that each particle can be represented by a localised

wavepacket. Thus, for the teleportation problem:

Ψ = (a| ↑〉1 + b| ↓〉1)(| ↑〉2| ↓〉3 − | ↓〉2| ↑〉3)ρ(x1)φ(x2)ξ(x3)/
√

2

= {β(12)
1 [−b| ↑〉3 + a| ↓〉3] + β

(12)
2 [+b| ↑〉3 + a| ↓〉3]+

β
(12)
3 [−a| ↑〉3 + b| ↓〉3] + β

(12)
4 [−a| ↑〉3 − b| ↓〉3]}ρj #i3



subsequent measurement of the spin of particle 3, would divide ξ(x3) into two, but particle 3 would

always enter the wavepacket on the same branch of the superposition as particle 2 had entered

earlier, as only the information in that branch is active. This has been beautifully illustrated by

Dewdney et al. [DHK87]

As the particle 1 is in a separable state for both spin and position, no local interactions on

particle 2 or 3 will have any effect on the trajectory and spin of particle 1. Neither will any

measurement on particle 1 produce any effect on particles 2 and 3. The behaviour of the spins of

particles 2 and 3 will be determined by the pool of information common to them both, while only

the behaviour of particle 1 is determined by the [a,b] information, regardless of the basis in which

the spin states are expanded.

Now let us return to the main theme of this paper and consider the measurement that produces

teleportation. Here we need to introduce a Bell state measurement. Let the instrument needed for

this measurement be described by the wavepacket η(x0) where x0 is a variable (or a set of vari-

ables) characterising the state of this apparatus. The measurement is achieved via an interaction

Hamiltonian that can be written in the form H = O(12)∇0.

The interaction operator O(12) = λO
(12)
λ couples the x0 co-ordinate to the Bell state of particles

1 and 2 through the Bell state projection operators Oλ = βλβy
λ. This creates the state

Ψf = {η1(x0)β
(12)
1 [−b| ↑〉3 + a| ↓〉3] + η2(x0)β

(12)
2 [+b| ↑〉3 + a| ↓〉3]+

η3(x0)β
(12)
3 [−a| ↑〉3 + b| ↓〉3] + η4(x0)β

(12)
4 [−a| ↑〉3 − b| ↓〉3]}

ρ(x1)φ(x2)ξ(x3)/2

where η1(x0), η2(x0), η3(x0) and η4(x0) are the wavepackets of the four non-overlapping position

states corresponding to the four outcomes of the Bell state measuring instrument. Initially all four

systems become entangled and their behaviour will be determined by the new common pool of

information. This includes the [a,b] information that was initially associated only with particle 1.

As the position variable x0 of the measuring device enters one of the non- overlapping wavepack-

ets ηi(x0), only one of the branches of the superposition remains active, and the information in the

other branches will become passive. As this happens, particle 3 will develop a non-zero particle

spin s3, through the action of the quantum torque. The explicit non-locality of this allows the

affects of the Bell state measurement to instantaneously have an effect upon the behaviour of par-

ticle 3. The significance of the Ψ2 Bell state expansion is now revealed as simply the appropriate

basis for which the [a,b] information will be transferred entirely onto the behaviour of particle 3,

if only a single branch of the superposition were to remain active. The interaction with the Bell

state measuring device is required to bring about this change from active to passive information

in the other branches (and thereby actualising the potentiality of the remaining branch).

However, no meaningful information on [a,b] may yet be uncovered at particle 3 until it is

known which branch is active, as the average over all branches, occurring in an ensemble, will

be statistically indistinguishable from no Bell state measurement having taken place. Simply

by noting the actual position (x0) of the measuring device, the observer, near particles 1 and
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2, immediately knows which wavepacket x0 has entered, and therefore which state is active for

particle 3. The observer then sends this classical information to the observer at 3 who will then

apply the appropriate unitary transformation U1 · · ·U4 so that the initial spin state of particle 1

can be recovered at particle 3.

A.4 Conclusion

In the approach we have adopted here, the notion of active information introduced by Bohm and

Hiley [BH93] has been applied to the phenomenon of state teleportation. This gives rise to a

different perspective on this phenomenon and provides further insight into the notion of quantum

information. To see more clearly how teleportation arises in this approach let us re-examine the

above spin example in more general terms. The essential features can be seen by examining the

general structure of the quantum potential. Using the initial wave function, Ψi given above, the

quantum potential takes the form

Q(x1, x2, x3) = Q1(x1, a, b)Q23(x2, x3)

Here the coefficients a and b characterise the quantum potential acting only on particle 1. This

means that initially the information carried by the pair [a, b] actively operates on particle 1 alone.

At this stage the behaviour of particle 3 is independent of a and b, as we would expect.

To perform a Bell State measurement we must couple particle 1 to particle 2 by introducing the

interaction Hamiltonian given above. During this process, a quantum potential will be generated

that will couple all three particles with the measuring apparatus. When the interaction is over,

the final wave function becomes Ψf . This will produce a quantum potential that can be written

in the form

Q(x1, x2, x3, x0) = Q12(x1, x2, x0)Q3(x3, x0, a, b)

Thus after the measurement has been completed, the information contained in a and b has now

been encoded in Q3 which provides the active information for particle 3. Thus we see that the

information that was active on particle 1 has been transferred to particle 3. In turn this particle

has been decoupled from particle 2. Thus the subsequent spin behaviour of particle 3 will be

different after the measurement.

What we see clearly emerging here is that it is active information that has been transferred

from particle 1 to particle 3 and that this transfer has been mediated by the non-local quantum

potential. Let us stress once again that this information is in-formation for the particle and, at

this stage has nothing to do with ‘information for us’.

Previous discussions involving quantum information have been in terms of its relation to

Shannon information theory [Sch95]. In classical information theory, the expression H(A) =

−∑
palog2pa is regarded as the entropy of the source. Here pa is the probability that the mes-

sage source produces the message a. This can be understood to provide a measure of the mean
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number of bits, per signal, necessary to encode the output of a source. It can also be thought of

as a capacity of the source to carry potential information. The interest here is in the transfer of

‘information for us’.

Schumacher[Sch95] extended Shannon’s ideas to the quantum domain by introducing the notion

of a ‘qbit’ (the number of qbits per quantum system is log2(H), where H is the dimension of the

system Hilbert space). A spin state with two eigenvalues, say 0 and 1, can be used to encode 1

bit of information. To relate this to Shannon’s source entropy, Schumacher represents the signal

source by a source density operator

ρ =
∑

a

p(a)πa

where πa = |ai〉〈ai| is the set of orthogonal operators relevant to the measurements that will

be performed and p(a) is the probability of a given eigenvalue being found. The von Neumann

information S(ρ) = Tr(ρlog2ρ) corresponds to the mean number of qbits, per signal, necessary for



Appendix B

Consistent histories and the Bohm

approach

In a recent paper Griffiths1 claims that the consistent histories interpretation of quantum mechanics

gives rise to results that contradict those obtained from the Bohm interpretation. This is in spite of

the fact that both claim to provide a realist interpretation of the formalism without the need to add

any new mathematical content and both always produce exactly the same probability predictions

of the outcome of experiments. In contrasting the differences Griffiths argues that the consistent

histories interpretation provides a more physically reasonable account of quantum phenomena. We

examine this claim and show that the consistent histories approach is not without its difficulties.

B.1 Introduction

It is well known that realist interpretations of the quantum formalism are known to be notoriously

difficult to sustain and it is only natural that the two competing approaches, the consistent history

interpretation (CH) [Gri84] [Gri96] and the Bohm interpretation (BI)[BH87, BH93], should be

carefully compared and contrasted. Griffiths [Gri99] is right to explore how the two approaches

apply to interferometers of the type shown in Figure B.1.

Although the predictions of experimental outcomes expressed in terms of probabilities are iden-

tical, Griffiths argues that, nevertheless, the two approaches actually give very different accounts

of how a particle is supposed to pass through such an interferometer. After a detailed analysis

of experiments based on Figure B.1, he concludes that the CH approach gives a behaviour that

is ‘physically acceptable’, whereas the Bohm trajectories behave in a way that appears counter-

intuitive and therefore ‘unacceptable’. This behaviour has even been called ‘surrealistic’ by some

authors2. Griffiths concludes that a particle is unlikely to actually behave in such a way so that one
1The material in this Appendix originally appeared on the Los Alamos e-print archive[HM00] as a joint paper

with B J Hiley.
2This original criticism was made by Englert et al. [ESSW92]. An extensive discussion of this position has been
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Figure B.1: Simple interferometer

can conclude that the CH interpretation gives a ‘more acceptable’ account of quantum phenom-

ena. Notice that these claims are being made in spite of the fact no new mathematical structure

whatsoever is added to the quantum formalism in either CH or BI, and in consequence all the ex-

perimental predictions of both CH and BI are identical to those obtained from standard quantum

mechanics. Clearly there is a problem here and the purpose of our paper is to explore how this

difference arises. We will show that CH is not without its difficulties.

We should remark here in passing that these difficulties have already been brought out be Bassi

and Ghirardi [BG99a, BG99b, BG99c] and an answer has been given by Griffiths [Gri00]. At this

stage we will not take sides in this general debate. Instead will examine carefully how the analysis

of the particle behaviour in CH when applied to the interferometer shown in Figure B.1 leads to

difficulties similar to those highlighted by Bassi and Ghirardi [BG99b].

B.2 Histories and trajectories

The first problem we face in comparing the two approaches is that BI uses a mathematically well

defined concept of a trajectory, whereas CH does not use such a notion, defining a more general

notion of a history.

Let us first deal with the Bohm trajectory, which arises in the following way. If the particle

satisfies the Schrödinger equation then the trajectories are identified with the one-parameter so-

lutions of the real part of the Schrödinger equation obtained under polar decomposition of the

wave function [BH93]. Clearly these one-parameter curves are mathematically well defined and

unambiguous.

CH does not use the notion of a trajectory. It uses instead the concept of a history, which,

again, is mathematically well defined to be a series of projection operators linked by Schrödinger

presented by Hiley, Callaghan and Maroney [CHM00].
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Figure B.2: The CH ‘trajectories’.

evolution and satisfying a certainty consistency condition [Gri84]. Although in general a history

is not a trajectory, in the particular example considered by Griffiths, certain histories can be

considered to provide approximate trajectories. For example, when particles are described by

narrow wave packets, the history can be regarded as defining a kind of broad ‘trajectory’ or

‘channel’. It is assumed that in the experiment shown in figure 1, this channel is narrow enough

to allow comparison with the Bohm trajectories.

To bring out the apparent difference in the predictions of the two approaches, consider the

interferometer shown in Figure B.1. According to CH if we choose the correct framework, we can

say that if C fires, the particle must have travelled along the path c to the detector and any other

path is regarded as “dynamically impossible” because it violates the consistency conditions. The

type of trajectories that would be acceptable from this point of view are sketched in Figure B.2. In

contrast a pair of typical Bohm trajectories 3 are shown in Figure B.3 . Such trajectories are clearly

not what we would expect from our experience in the classical world. Furthermore there appears,

at least at first sight, to be no visible structure present that would ‘cause’ the trajectories to be

‘reflected’ in the region I, although in this region interference between the two beams is taking

place. In the Bohm approach, an additional potential, the quantum potential, appears in the

region of interference and it is this potential that has a structure which ‘reflects’ the trajectories as

shown in Figure B.3. (See Hiley et al. [CHM00] for more details). In this short note we will show

that the conclusions reached by Griffiths [Gri99] cannot be sustained and that it is not possible

to conclude that the Bohm ‘trajectories’ must be ‘unreliable’ or ‘wrong’. We will show that CH

cannot be used in this way and the conclusions drawn by Griffiths are not sound.
3Detailed examples of these trajectories will be found in Hiley, Callaghan and Maroney [CHM00].
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Figure B.3: The Bohm trajectories.

B.3 The interference experiment

Let us analyse the experimental situation shown in figure 1 from the point of view of CH. A

unitary transformation U(tj+1, tj) is used to connect set of projection operators at various times.

The times of interest in this example will be t0, t1, and t2. t0 is a time before the particle enters

the beam splitter, t2 is the time at which a response occurs in one of the detectors C or D and t1

is some intermediary time when the particle is in the interferometer before the region I is reached

by the wave packets.

The transformation for t0 → t1 is

|ψ0〉 = |sCD〉0 → 1√
2
[|cC⁄D〉1 + |dCD⁄〉1] (B.1)

The transformation for t1 → t2 is, according to Griffiths [Gri93, Gri99]

|cCD〉1 → |C⁄D〉2, and |dCD〉1 → |CD⁄〉2 (B.2)

These lead to the histories

ψ0 ⊗ c1 ⊗ C⁄
2 , and ψ0 ⊗ d1 ⊗D

⁄]
2 (B.3)

Here ψ0 is short hand for the projection operator |ψ〉 〈ψ | at time t0 etc.

These are not the only possible consistent histories but only these two histories are used by

Griffiths to make judgements about the Bohm trajectories. The two other possible histories

ψ0 ⊗ d1 ⊗ C⁄
2 , and ψ0 ⊗ c1 ⊗D⁄

2 (B.4)

have zero weight and are therefore deemed to be dynamically impossible.

The significance of the histories described by equation B.3 is that they give rise to new condi-

tional probabilities that cannot be obtained from the Born probability rule [Gri98]. These condi-

tional probabilities are

Pr(c1|ψ0 ∧ C⁄
2 ) = 1, P r(d1|ψ0 ∧D⁄

2) = 1. (B.5)
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Starting from a given initial state, ψ0, these probabilities are interpreted as asserting that when

the detector C is triggered at t2, one can be certain that, at the time t1, the particle was in the

channel c and not in the channel d. In other words when C fires we know that the triggering

particle must have travelled down path c with certainty.

This is the key new result from which the difference between the predictions of CH and the

Bohm approach arises. Furthermore it must be stressed that this result cannot be obtained from

the Born probability rule and is claimed by Griffiths [Gri98] to be a new result that does not

appear in standard quantum theory4.

Looking again at Figure B.1, we notice that there is a region I where the wave packets travelling

down c and d overlap. Here interference can and does take place. In fact fringes will appear along

any vertical plane in this region as can be easily demonstrated. Indeed this interference is exactly

the same as that produced in a two-slit experiment. The only change is that the two slits have been

replaced by two mirrors. Once this is realised alarm-bells should ring because the probabilities in

B.5 imply that we know with certainty through which slit the particle passed. Indeed equation

B.5 shows that the particles passing through the lower slit will arrive in the upper region of the

fringe pattern, while those passing through the upper slit will arrive in the lower half 5.

Recall that Griffiths claims CH provides a clear and consistent account of standard quantum

mechanics, but the standard theory denies the possibility of knowing which path the particle took

when interference is present. Thus the interpretation of equation B.5 leads to a result that is not

part of the standard quantum theory and in fact contradicts it. Nevertheless CH uses the authority

of the standard approach to strengthen its case against the Bohm approach. Surely this cannot

be correct.

Indeed Griffiths has already discussed the two-slit experiment in an earlier paper [Gri94]. Here

he argues that CH does not allow us to infer through which slit the particle passes. He writes; -

Given this choice at t3 [whether C or D fires], it is inconsistent to specify a decompo-

sition at time t2 [our t1] which specifies which slit the particle has passed through, i.e.,

by including the projector corresponding to the particle being in the region of space

just behind the A slit [our c], and in another region just behind the B slit [our d]. That

is (15) [the consistency condition] will not be satisfied if projectors of this type at time

t2 [our t1] are used along with those mentioned earlier for time t3.

The only essential difference between the two-slit experiment and the interferometer described

by equation B.3 above is in the position of the detectors. But according to CH measurement

merely reveals what is already there, so that the position of the detector in the region I or beyond

should not affect anything. Thus there appears to be a contradiction here.
4It should be noted that the converse of B.5 must also hold. Namely, if C does not fire then we can conclude

that at



To emphasise this difficulty we will spell out the contradiction again. The interferometer in

Figure B.1 requires the amplitude of the incident beam to be split into two before the beams are

brought back together again to overlap in the region I. This is exactly the same process occurring

in the two-slit experiment. Yet in the two-slit experiment we are not allowed to infer through

which slit the particle passed while retaining interference, whereas according to Griffiths we are

allowed to talk about which mirror the particle is reflected off, presumably without also destroying

the interference in the region I. We will return to this specific point again later.

One way of avoiding this contradiction is to assume the following: -

1. If we place our detectors in the arms c and d before the interference region I is reached then

we have the consistent histories described in equation B.3. Particles travelling down c will fire C,

while those travelling down d will fire D. In this case we have an exact agreement with the Bohm

trajectories.

2. If we place our detectors in the region of interference I then, according to Griffiths [Gri94],

the histories described by equation B.3 are no longer consistent. In this case CH can say nothing

about trajectories.

3. If we place our detectors in the positions shown in Figure B.1, then, according to Grif-

fiths [Gri99], the consistent histories are described by equation B.3 again. Here the conditional

probabilities imply that all the particles travelling down c will always fire C. Bohm trajectories

contradict this result and show that some of these particles will cause D to fire . These trajectories

are shown in Figure B.3.

It could be argued that this patchwork would violate the one-framework rule. Namely that

one must either use the consistent histories described by equation B.3 or use a set of consistent

histories that do not allow us to infer off which mirror the particle was reflected. This latter would

allow us to account for the interference effects that must appear in the region I.

A typical set of consistent histories that do not allow us to infer through which slit the particle

passed can be constructed in the following way.

Introduce a new set of projection operators |(c + d)〉〈(c + d)| at t3 where t1 < t3 < t2. Then we

have the following possible histories

ψ0 ⊗ (c + d)3 ⊗ C⁄
2 , and ψ0 ⊗ (c + d)3 ⊗D⁄

2 (B.6)

Clearly from this set of histories we cannot infer any generalised notion of a trajectory so that we

cannot say from which mirror the particle is reflected. What this means then is that if we want

to talk about trajectories we must, according to CH, use the histories described by equation (3)

to cover the whole region as, in fact, Griffiths [Gri99] actually does. But then surely the nodes in

the interference pattern at I will cause a problem.

To bring out this problem let us first forget about theory and consider what actually happens

experimentally as we move the detector C along a straight line towards the mirror M1. The

detection rate will be constant as we move it towards the region I. Once it enters this region, we
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will find that its counting rate varies and will go through several zeros corresponding to the nodes

in the interference pattern. Here we will assume that the detector is small enough to register these

nodes.

Let us examine what happens to the conditional probabilities as the detector crosses the in-

terference region. Initially according to B.5, the first history gives the conditional probability

Pr(c1|ψ0 ∧ C⁄
3 ) = 1. However, at the nodes this conditional probability cannot even be defined

as Pr(C⁄
3 ) = 0. Let us start again with the closely related conditional probability, derived from

the same history Pr(C⁄
3 |ψ0 ∧ c1) = 1. Now this probability clearly cannot be continued across

the interference region because Pr(C⁄
3 ) = 0 at the nodes, while Pr(ψ0 ∧ c1) = 0.5 regardless of

where the detector is placed. In fact, there is no consistent history that includes both c1 and C⁄
3 ,

when the detector is in the interference region. We are thus forced to consider different consistent

histories in different regions as we discussed above.

If we follow this prescription then when the detector C is placed on the mirror side of path c,

before the beams cross at I, we can talk about trajectories and as stated above these trajectories

agree with the corresponding Bohm trajectories. When C is moved right through and beyond the

region I, we can again talk about trajectories. However in the intermediate region CH does not

allow us to talk about trajectories. This means that we have no continuity across the region of

interference and this lack of continuity means that it is not possible to conclude that any ‘trajectory’

defined by ψ0⊗ c1⊗C⁄ before C reaches the interference region is the same ‘trajectory’ defined by

the same expression after C has passed through the interference region. In other words we cannot

conclude that any particle travelling down c will continue to travel in the same direction through

the region of interference and emerge still travelling in the same direction to trigger detector C.

What this means is that CH cannot be used to draw any conclusions on the validity or otherwise

of the Bohm trajectories. These latter trajectories are continuous throughout all regions. They

are straight lines from the mirror until they reach the region I. They continue into the region

of interference, but no longer travel in straight lines parallel to the initial their paths. They

show ‘kinks’ that are characteristic of interference-type bunching that is needed to account for the

interference [DHP79]. This bunching has the effect of changing the direction of the paths in such

a way that some of them eventually end up travelling in straight lines towards detector D and not

C as Griffiths would like them to do.

Indeed it is clear that the existence of the interference pattern means that any theory giving

relevance to particle trajectories must give trajectories that do not move in straight lines directly

through the region I. The particles must avoid the nodes in the interference pattern. CH offers

us no reason why the trajectories on the mirror side of I should continue in the same general

direction towards C on the other side of I. In order to match up trajectories we have to make some

assumption of how the particles cross the region of interference. One cannot simply use classical

intuition to help us through this region because classical intuition will not give interference fringes.

Therefore we cannot conclude that the particles following the trajectories before they enter the
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region I are the same particles that follow the trajectories after they have emerged from that

region. This requires a knowledge of how the particles cross the region I, a knowledge that is not

supplied by CH.

Where the consistent histories B.3 could provide a complete description is when the coherence

between the two paths is destroyed. This could happen if a measurement involving some irreversible

process was made in one of the beams. This would ensure that there was no interference occurring

in the region I. In this case the trajectories would go straight through. This would mean that the

conditional probabilities given in equation B.5 would always be satisfied.

But in such a situation the Bohm trajectories would also go straight through. The particles

coming from Mirror M1 would trigger the detector C no matter where it was placed. The reason

for this behaviour in this case is because the wave function is no longer ψc + ψd, but we have two

incoherent beams, one described by ψc and the other by ψd. This gives rise to a different quantum

potential which does not cause the particles to be ‘reflected’ in the region I. So here there is no

disagreements with CH.

B.4 Conclusion

When coherence between the two beams is destroyed it is possible to make meaningful inferences

about trajectories in CH. These trajectories imply that any particle reflected from the mirror M1

must end up in detector C. In the Bohm approach exactly the same conclusion is reached so that

where the two approaches can be compared they predict exactly the same results.

When the coherence between the two beams is preserved then CH must use the consistent

histories described by equation B.6. These histories do not allow any inferences about trajectories

to be drawn. Although the consistent histories described by equation B.3 enable us to make

inferences about particle trajectories because, as we have shown they lead to disagreement with

experiment. Unlike the situation in CH the Bohm approach can define the notion of a trajectory

which is calculated from the real part of the Schrödinger equation under polar decomposition.

These trajectories are well defined and continuous throughout the experiment including the region

of interference. Since CH cannot make any meaningful statements about trajectories in this case

it cannot be used to draw any significant conclusions concerning the validity or otherwise of the

Bohm trajectories. Thus the claim by Griffiths [Gri99], namely, that the CH gives a more reasonable

account of the behaviour of particle trajectories interference experiment shown in Figure B.1 than

that provided by the Bohm approach cannot be sustained.
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Appendix C

Unitary Evolution Operators

The time evolution of a quantum system is usually calculated by starting with a Hamiltonian

energy operator H and the Schrödinger equation. When the Hamiltonian is time independant this

leads to the evolution, in the Schrödinger picture, of a quantum state |φ〉

|φ(t)〉 = eiHt |φ(0)〉

The operator U = eiHt is referred to as the unitary evolution operator. When the Hamiltonian

is not time independant, the evolution of the system is still described by a unitary evolution

operator, but now U is the solution to the more complex operator Schrödinger equation

ih̄
∂U

∂t
= HU (C.1)

U is unitary if H is hermitian and the integration constant is such that at some given t = t0,

then U(t0) = I, the unit matrix. (We will assume t0 = 0).

It would be normal practice to proceed by analysing the classical interaction of a one-atom gas

in a box, with a moveable partition, replace the terms in the classical Hamiltonian with canonically

quantized operators, and then solve the operator Schrödinger equation. However, this would tie

our analysis to examining the properties of a particular Hamiltonian. This is precisely the criticism

that was made of Brillouin and Gabor, that they generalised to a conclusion from a specific form

of interaction.

In order to avoid this, we will not attempt to start from a specific Hamiltonian operator. Instead

we will proceed by constructing unitary time evolution operators, and assume that an appropriate

Hamiltonian can be defined by:

H(t) = ih̄
∂U(t)

∂t
Uy(t)

This Hamiltonian will be hermitian, if U(t) is unitary1.

1We shall, nevertheless, present arguments as to the plausibility of the existence of the necessary Hamiltonians,
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The problem is therefore simplified to that of determining how the evolution of the Szilard

Engine is constrained by the requirement of ensuring the evolution operator remains unitary. If

the appropriate transformations of the state of the Szilard Engine can be expressed with a unitary

time evolution operator, then there is nothing, in principle, to prevent some physical system of being

constructed with an appropriate Hamiltonian. Such a system would then perform all the necessary

operations of the Szilard Engine without needing an external ’demon’ to make measurements or

process information about the system.

A unitary operator is defined by the conditions

UyU = UUy = I

U (α |a〉+ β |b〉) = αU (|a〉) + βU (|b〉)

It can easily be shown that this is equivalent to the statement that the unitary operator can be

written in the form:

U =
∑

n

|φn〉 〈ψn |

where the |φn〉 and |ψn〉 are two (usually different) sets of orthonormal basis for the Hilbert space.

If the instantaneous eigenstates of the unitary operator at time t are given by the basis |ϕn(t)〉 ,

then the unitary operator will have eigenvalues e¡iθn(t) and the form

U(t) =
∑

n

e¡iθn(t) |ϕn(t)〉 〈ϕn(t) |

The associated Hamiltonian is given by

H(t) =
∑

n

h̄
dθn(t)

dt
|ϕn(t)〉 〈ϕn(t) |

+
∑
m,n

ei(θm(t)¡θn(t)) |ϕm(t)〉 〈ϕm(t) | d (|ϕn(t)〉 〈ϕn(t) |)
dt

For the Hamiltonian to be time independant, the eigenstates must to be constant in time, and

the eigenvalues must be of the form:

θn(t) =
En

h̄
t

An alternative formulation of this requirement is that the unitary operator has the form

U(t)U (t0) = U (t + t0)

Instantaneous eigenstates of the time evolution operator are only eigenstates of the Hamiltonian

if they are also constant in time. There are two special cases of the general time dependant

where it seems appropriate to do so. According to the theory of quantum computation [Deu85, Deu89] any unitary

operation can, in principle, be efficiently simulated on a universal quantum computer. This strongly suggests

that any condition more restrictive than unitarity would be too restrictive not to risk coming under threat from

developments in quantum computing.
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Hamiltonian: rapid transition and adiabatic transition [Mes62, Chapter 17]. These correspond

to very fast and very slow changes in the Hamiltonian, or alternatively, to the change in the

Hamiltonian taking place over a very short or very long period τ . In the first case (rapid transition)

the asymptotic evolution is given by:

lim
τ!0

U(τ) = 1

while in the second case (adiabatic transition)

lim
τ!1

U(τ) =
∑

n

e
i
h̄

∫ τ
En(t)dt |n(τ)〉 〈n(0) |

where the |n(t)〉 > are the instantaneous eigenstates of the Hamiltonian, and En(t) are their

instantaneous energy levels.

Time dependant Hamiltonians correspond to evolutions that do not conserve the internal energy

of a system. These will require energy to be drawn from, and deposited in, a work reservoir

- corresponding to work done upon or extracted from the system - through varying boundary

conditions (or ’switching on’ potentials). Unitarity requires only that the variation in the boundary

condition (or potential) does not have any dependance upon the specific internal state of the

system2. Instead, to analyse the energy drawn from, or deposited in, the work reservoir it is the

necessary to calculate the change in the energy of the system once the boundary conditions become

fixed again (or the potential is ’switched off’) compared to the energy of the system beforehand.

A more detailed approach separates the Hamiltonian into a time-indepedant parts Hi, that

refers to specific subsystems i, and into a time-dependant part Vij(t), that refers to the interaction

between subsystems ij or with the changing external conditions.

H(t) =
∑

ij

(Hi + Vij(t))

If Vij does not commute with all the Hi, then the eigenstates of H(t) will involve superpositions

of the eigenstates of the Hi. Strictly speaking, this means there will not be well-defined energies

to the individual subsystems. Nevertheless, it is usual practice to regard the change of internal

energy of subsystem i as the expectation value of the internal, time-independant Hamiltonian 〈Hi〉,
while the complete system evolves under the influence of the full Hamiltonian H(t). When the

time-dependant part is ”small” this can be treated by perturbation theory, but it is still meaningful

when the time-dependant part is ”large”, as 〈Hi〉t is still the expectation value of measuring the

internal energy of subsystem i at time t.

The Hamiltonian Hi is also relevant as an internal energy where a particular subsystem i is in

contact with a heat bath. The interaction with a heat bath generally causes a subsystem density

matrix to diagonalise along the eigenstates of the subsystems Hamiltonian Hi (see Section 6.1).

2The use of work reservoirs and their connection to time dependant Hamiltonians is essential to the standard

definition of a number of thermodynamic entities, such as free energy.
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Appendix D

Potential Barrier Solutions

This Appendix contains a detailed analysis of the eigenstates of the particle in a box, with a

potential barrier of height V and width 2d raised in the centre of the box. We start with the

Hamiltonian given in Equation 5.7

HΨ =
(
− h̄2

2m

∂2

∂x2
+ V (x)

)
Ψ

with

V (x) =





∞ (x < −L)

0 (−L < x < −d)

V (−d < x < d)

0 (d < x < L)

∞ (L < x)





and substitute

X =
x

L

Kal =
L
√

2mEl

h̄

Kbl =
L

√
2m(El − V )

h̄

Kcl =
L

√
2m(V − El)

h̄

p =
d

L

ε =
h̄2π2

8mL2

The solution is divided into three regions:

Ψ1(X) −1 < X < −p

Ψ2(X) −p < X < p

Ψ3(X) p < X < 1
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As the Hamiltonian is symmetric in X, then the solutions must be of odd or even symmetry,

imposing the additional conditions

ODD
Ψ1(X) = −Ψ3(−X)

Ψ2(X) = −Ψ2(−X)

EV EN
Ψ1(X) = Ψ3(−X)

Ψ2(X) = Ψ2(−X)

Boundary conditions and continuity requires:

Ψ1(−1) = Ψ3(1) = 0

Ψ1(−p) = Ψ2(−p)

Ψ3(p) = Ψ2(p)
∂Ψ1(X)

∂X
|X=¡p =

∂Ψ2(X)
∂X

|X=¡p

∂Ψ2(X)
∂X

|X=p =
∂Ψ3(X)

∂X
|X=p

The energy of the eigenstates are given by

El =
4ε

π2
(Kal)2

Outside Barrier

The lth odd or even eigenstates have Ψ1l(X) and Ψ3l(X) as sine functions of the form

Ψ1l(X) = Al sin(Kal(1 + X))

Ψ3l(X) = ±Al sin(Kal(1−X))

with ± depending upon the odd or even symmetry.

Within Barrier

The form of Ψ2l(x) depends upon the height of the barrier, V relative to the energy of the eigenstate

El. For El > V , Ψ2l(x) is a sine (odd symmetry) or cosine (even symmetry) function, with

wavenumber Kbl. When the barrier height is higher than the energy, El > V , the wavefunction

becomes a hyperbolic function (sinh for odd symmetry, cosh for even symmetry) of wavenumber

Kcl. When the barrier height V = E , the Hamiltonian in the barrier region leads to:

∂2

∂X2
Ψ = 0

which has solutions

Ψl = BlX + Cl

For odd functions, Cl = 0 , while for even functions, Bl = 0.
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Two approximations will be made consistently: p ¿ 1, and when, for any a, b

tan(a) = b ¿ 1

a + lπ ≈ b

with l = 1, 2, 3 . . . In addition, two further approximations will be made, in the limit of a narrow,

and a high potential barrier.

Narrow Barrier Approximation (NBA)

The NBA is used whenever

Kblp < Kalp ¿ 1

The first inequality always holds when El ≥ V , and the second effectively states that the wavelength

of the eigenstate is much larger than the width of the potential barrier. Obviously for very high

quantum numbers this cannot be true. It will be justified by the fact that we will later be using

a thermal wavefunction, and there will be exponentially little contribution from high quantum

number wavefunctions.

The NBA will also be used for E < V if the energy eigenvalue is only slightly lower than the

barrier so that

Kclp < Kalp ¿ 1

High Barrier Approximation (HBA)

HBA can only be used where V À E, which approaches the limit of an infinitely high potential.

In this case we assume:

Kclp À 1 À Kalp

where the second inequality is again assuming that very high quantum numbers are thermody-

namically suppressed. The main approximations are:

tanh(Kclp) ≈ 1− 2e¡2Kclp

sinh(Kclp) ≈ 1
2
eKclp

cosh(Kclp) ≈ 1
2
eKclp

D.1 Odd symmetry

D.1.1 E > V

Ψl =

Al sin(Kal(X + 1)) −1 < X < −p

Bl sin(KblX) −p < X < p

Al sin(Kal(X − 1)) p < X < 1
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Continuity conditions lead to:

Al = Bl
sin(Kblp)

sin(Kal(p− 1))
tan(Kblp)

Kbl
=

tan(Kal(p− 1))
Kal

and normalisation gives:

|Al|2 =
2KalKbl sin2(Kblp)

L


 Kal sin2(Kal(1− p))(2Kblp− sin(2Kblp))

+Kbl sin2(Kblp)(2Kal(1− p)− sin(2Kal(1− p)))




NBA

Applying the NBA to Kbl in the second continuity equation leads to

tan(Kal(p− 1)) ≈ Kalp

(Kal(p− 1)) + lπ ≈ Kalp

Kal ≈ lπ

El ≈ ε(2l)2

This corresponds to the energy of the n = 2l (symmetry odd) solutions of the unperturbed wave-

function. For normalisation we use

sin(Kal(p− 1)) ≈ sin(Kalp− lπ) = (−1)l sin(Kalp)

≈ (−1)lKalp

sin(2Kal(p− 1)) ≈ sin(2Kalp− l2π) = sin(2Kalp)

≈ 2Kalp

to give

Al ≈ 1√
L

Bl ≈ (−1)l Kal

Kbl

1√
L

The wavefunction in the region of the barrier approximates

Ψl = Bl sin(KblX) ≈ BlKblX

≈ (−1)l Kal√
L

D.1.2 E = V

Ψl =

Al sin(Kal(X + 1)) −1 < X < −p

BlX −p < X < p

Al sin(Kal(X − 1)) p < X < 1
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Continuity:

Al = Bl
p

sin(Kal(p− 1))
tan(Kal(p− 1)) = Kalp

Normalisation:

|Al|2 =
6Kal

L(4Kalp sin2(Kal(1− p)) + 6Kal(1− p)− 3 sin(2Kal(1− p)))

NBA

(Kal(p− 1)) + lπ ≈ Kalp

Kal ≈ lπ

El ≈ ε(2l)2

Al ≈ 1√
L

(
1

1 + 8
3Kalp2

)
≈ 1√

L

Bl ≈ (−1)lKal
1√
L

D.1.3 E < V

Ψl =

Al sin(Kal(X + 1)) −1 < X < −p

Bl sinh(KclX) −p < X < p

Al sin(Kal(X − 1)) p < X < 1

Continuity:

Al = Bl
sinh(Kclp)

sin(Kal(p− 1))
tanh(Kclp)

Kcl
=

tan(Kal(p− 1))
Kal

Normalisation:

|Al|2 =
2KalKcl sinh2(Kclp)

L


 Kcl sinh2(Kclp)(2Kal(1− p)− sin(2Kal(1− p)))

+Kal sin2(Kal(1− p))(sinh(2Kalp) + 2Kalp)




NBA

When E is only slightly larger than V (ie. Kclp ¿ 1 ), then the approximations for sinh and tanh

match those made for the NBA with E < V and lead to the same approximate solutions.

HBA

tan(Kal(p− 1)) ≈ Kal

Kcl

(
1− 2e¡2Kclp

) ¿ 1
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Kal(p− 1) + lπ ≈ Kal

Kcl

(
1− 2e¡2Kclp

)

Kal ≈ lπ

(1− p)

(
1 +

(1− 2e¡2Kclp)
Kcl(1− p)

)¡1

≈ lπ

(1− p)

(
1− (1− 2e¡2Kclp)

Kcl(1− p)

)

El ≈ ε

(
2l

(1− p)

)2 (
1− 2

(1− 2e¡2Kclp)
Kcl(1− p)

)

which approaches El ≈ ε
(

2l
(1¡p)

)2

.

Normalisation of the wavefunction is more complex, but dropping terms of order e¡2Kclp we

get

Kal(p− 1) + lπ ≈ Kal

Kcl

sin(Kal(p− 1)) ≈ (−)l sin
(

Kal

Kcl

)
≈ (−)l

(
Kal

Kcl

)

sin(2Kal(1− p)) ≈ −2
Kal

Kcl

Al ≈ 1√
L(1− p)

Bl ≈ 2(−)l

(
Kal

Kcl

)
e¡Kclp

√
L(1− p)

The wavefunction in the region of the barrier (|X| < p) is then:

Ψl = Bl sinh(KclX) ≈ (−)l

√
L

(
Kal

Kcl

)
e¡Kcl(p¡X) − e¡Kcl(p+X)

√
(1− p)

For large Kcl this is non-negligible at the very edges of the barrier (|X| ≈ p).

D.1.4 Summary

The wavefunction and eigenvalues undergo negligible perturbation until E > V . As the potential

barrier becomes large, the wavefunction becomes zero inside the barrier and the wavenumber

increases by a factor of 1
1¡p , causing a minor increase in the energy levels.

D.2 Even symmetry

D.2.1 E > V

Ψl =

Al sin(Kal(1 + X)) −1 < X < −p

Cl cos(KblX) −p < X < p

Al sin(Kal(1−X)) p < X < 1

Continuity:

Al = C1
cos(Kblp)

sin(Kal(1− p))
1

Kbl tan(Kblp)
=

tan(Kal(1− p))
Kal
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Normalisation:

|A|2 =
2KalKbl cos2(Kblp)

L


 Kal sin2(Kal(1− p))(2Kblp + sin(2Kblp))

+Kbl cos2(Kblp)(2Kal(1− p)− sin(2Kal(1− p)))




NBA

cot(Kal(1− p)) ≈ Kblp
Kbl

Kal
¿ 1

−(Kal(1− p)) +
(2l − 1)

2
π ≈ Kblp

Kbl

Kal

If we assume the barrier is low (Kal ≈ Kbl)

Kal ≈ (2l − 1)
2

π

El ≈ ε(2l − 1)2

which gives the n = (2l − 1) unperturbed energies.

When the barrier rises to V = E, then Kbl becomes small enough to be negligible, and

Kal ≈ (2l − 1)
2(1− p)

π

El = ε

(
2l − 1
1− p

)2

corresponding to a slightly perturbed (p ¿ 1) energy of the n = (2l−1) solutions. For normalisation

sin(Kal(1− p)) ≈ −(−1)l

sin(2Kal(1− p)) ≈ 2Kblp
Kbl

Kal

|Al|2 ≈ 1
L




1

1 + p

(
1−

(
Kbl

Kal

)2
)




Cl ≈ −(−1)lAl

which gives the unperturbed values when Kbl ≈ Kal. When Kbl ¿ Kal it leads to

|Al|2 ≈ 1
L

(
1

1 + p

)

The wavefunction in the region of the barrier approximates:

Ψ = Cl cos(KblX) ≈ Cl

D.2.2 E = V

Ψl =

Al sin(Kal(1 + X)) −1 < X < −p

Cl −p < X < p

Al sin(Kal(1−X)) p < X < 1
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Continuity :

Al =
Cl

sin(Kal(1− p))
AlKal cos(Kal(1− p)) = 0

This has exact solutions

(Kal(1− p)) =
(2l − 1)π

2

Kal =
(2l − 1)
2(1− p)

π

El = ε

(
2l − 1
1− p

)2

Normalisation uses sin(Kal(1− p)) = −(−1)l and sin(2Kal(1− p)) = 0

Al =
1√

L(1 + p)

Cl =
−(−1)l

√
(1 + p)

D.2.3 E < V

Ψ =

Al sin(Kal(1 + X)) −1 < X < −p

Cl cosh(KclX) −p < X < p

A1 sin(Kal(1−X)) p < X < 1

Continuity:

Al = Cl
cosh(Kclp)

sin(Kal(1− p))
1

Kcl tanh(Kclp)
= − tan(Kal(1− p))

Kal

Normalisation:

|Al|2 =
2KalKcl cosh2(Kclp)

L


 Kcl cosh2(Kclp)(2Kal(1− p)− sin(2Kal(1− p)))

+Kal sin2(Kal(1− p))(2Kalp− sinh(2Kalp))




NBA

When E is only slightly higher than V , these results approximate to the same results as the

approximation for NBA with E > V . These approximations match the exact solutions for E = V .

HBA

tan(Kal(1− p)) ≈ −Kal

Kcl

(
1 + 2e¡2Kclp

) ¿ 1

Kal(1− p)− lπ ≈ −Kal

Kcl

(
1 + 2e¡2Kclp

)
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Kal ≈ lπ

(1− p)

(
1 +

(1 + 2e¡2Kclp)
Kcl(1− p)

)¡1

≈ lπ

(1− p)

(
1− (1 + 2e¡2Kclp)

Kcl(1− p)

)

El ≈ ε

(
2l

(1− p)

)2 (
1− 2

(1 + 2e¡2Kclp)
Kcl(1− p)

)

which approaches El ≈ ε
(

2l
(1¡p)

)2

. For normalisation, we drop terms involving e¡2Kclp and get

Kal(p− 1) + lπ ≈ Kal

Kcl

sin(Kal(p− 1)) ≈ (−)l sin
(

Kal

Kcl

)

≈ (−)l

(
Kal

Kcl

)

sin(2Kal(1− p)) ≈ 2
Kal

Kcl

Al ≈ 1√
L

1√
1− p

Cl ≈ 2(−)l

√
L

(
Kal

Kcl

)
e¡Kclp

√
1− p

The wavefunction in the region of the barrier (|X| < p) is then:

Ψl = Cl cosh(KclX)

≈ (−)l

√
L

(
Kal

Kcl

)
e¡Kcl(p¡X) + e¡Kcl(p+X)

√
1− p

For large Kcl this is non-negligible at the very edges of the barrier (|X| ≈ p)

D.2.4 Summary

The even symmetry wavefunctions undergo a minor perturbation, of order p, as the barrier rises

to V = E. As the barrier rises above the energy eigenvalue, the initial peak at X = 0 becomes

a node, as the wavefunction is expelled from the potential barrier region. The energy of the lth

even eigenstate increases from the unperturbed value El = ε(2l − 1)2 to El = ε
(

2l
1¡p

)2

. The

final energy level, in the limit of an infinitely high barrier, becomes degenerate with the lth odd

symmetry eigenstate.

D.3 Numerical Solutions to Energy Eigenvalues

Given the dependancies of Kal, Kbl and Kcl on El and V , each of the second of the continuity

equations can be rewritten in the form f(En, V ) = 0, which defines a discrete set of eigenstates

for a given V . These eigenstates can be evaluated by numerically solving the differential equation

dEl

dV
= −

(
∂f

∂V

)/(
∂f

∂El

)
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with initial values given by solutions to El for the unperturbed eigenstates of V = 0 given in

Section 5.1. The solutions for El can then be used to calculate Kal and so plot the wavefunction

itself. Numerical solutions to these equations were evaluated using the MATLAB[MAT] analysis
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Figure D.1: First six energy eigenvalues with potential barrier

package, and setting ε = L = 1, p = 0.01 The results are shown in Figures D.1,D.2 and D.3.

Figure D.1 shows the changes in the eigenvalues of the first three (odd and even symmetry)

pairs of eigenstates as the barrier height increases. The eigenvalues pass continuously from the

V = 0 values, through V = E, to the V À E values, becoming degenerate only in the limit

of the infinitely high barrier. Figure D.2 shows the changes in the wavefunction of the first and

third even symmetry eigenstates, with barrier heights starting at twice the energy eigenvalue. The

eigenstates clearly develop a node in the center, shortening their wavelengths, until they reach the

same wavelength as the corresponding odd symmetry state. Finally, in the limit of the infinite

potential barrier the odd and even symmetry states differ only by a change of sign at they pass

through the origin, shown in Figure D.3
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Figure D.2: Perturbation of Even Symmetry Eigenstates
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Appendix E

Energy of Perturbed Airy

Functions

The insertion of shelves at height h into the wavefunction of a quantum weight will cause a

perturbation of the energy eigenvalues. Due to the nature of the Airy functions, it is not possible

to calculate the effect of this perturbation exactly. However, it can be estimated for two extremes,

and be shown to involve negligible energy changes for high quantum numbers. It is argued that it

is reasonable to assume that there is also negligible energy changes between the two extremes.

This is based upon calculations in [NIS] for the quantum state of a particle in a linear potential

between two barriers. We will calculate the effect of inserting a potential barrier for high quantum

numbers n, where the shelf height is large and small in comparison with the characteristic height of

the wavefunction −anH. The unperturbed energy of the state is En = −anMgH. We will always

use the asymptotic approximation an = − (
3πn
2

)2/3.

Large Shelf Height

If the shelf is inserted at a height h À −anH then there is negligible perturbation of the wave-

function, as the potential changes only in a region where the wavefunction is negligibly small. The

final energy is therefore approximately the same as the unperturbed energy:

E(1)
n =

(
3πn

2

)2/3

MgH

Small Shelf Height

If the shelf is inserted at a height h ¿ −anH, the wavefunction is split into two, above and below

the shelf. We will start by assuming that the shelf is inserted at a node, and that m nodes are

above the shelf height (see Figure 5.5). The number of nodes below the shelf height is given by

k = n−m, and the shelf height is h = (am − an)H.
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The low shelf height is equivalent to the assumption that k ¿ n. There are two subcases,

depending upon whether k itself is large or small.

If k is small, then m ≈ n and there is negligible probability of the weight being located below

the shelf, and we only need to consider the wavefunction above. This is the same as an unperturbed

wavefunction with m nodes, raised by a height h, and so will have an energy

E(2)
m = −amMgH + Mgh

= −anMgH

= En

If 1 ¿ k ¿ n we need to estimate the energy of the wavefunction above and below the barrier.

Above the barrier, we again have a wavefunction with energy E
(2)
m =

itJ -75.cane (b)84253(as)-254(he)-2537.16 TDh



of the potential barrier will then have negligible effect upon the energy levels of the high quantum

number states.
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Appendix F

Energy Fluctuations

We suppose that the expansion of the gas, described in Section 6.2 takes places in n steps, and

after each step the gas is allowed to thermalise through interactions with an environment. This

thermalisation randomises the individual state of the gas from step to step.

The energy transferred by the i0th state, on the m0th step is denoted by δEim and the probability

of the gas being in the i0th state, on the m0th step is pim. Clearly
∑

i pim = 1. The randomisation of

the state between steps means that the probabilities at different steps can be treated as statistically

independant.

We describe the ordered set of states that the system passes through on a given expansion by

the array α = (ijk . . .), which means the system is in the i0th state on the first step, j0th state on

the second step, etc. We also write this as α1 = i, α2 = j or α = (α1α2 . . .). The probability of α

occurring is given by

Pα =
∏

m=1,n

pαmm

∑
α

Pα =
∑

α1,α2,...

( ∏
m=1,n

pαmm

)
= 1

and the energy transferred on such an expansion is

Eα =
∑
m

δEαmm

We also need to note the following identities

∑
α1,α2,...

( ∏
m=1,n

pαmmf(αk)

)
=

∑
αk

pαkkf(αk)

∑
α1,α2,...

( ∏
m=1,n

pαmmf(αk, αl)

)
=

∑
αk,αl

pαkkpαllf(αk, αl)

etc.

We can now write the following results
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Mean energy transfer and fluctuation on m0th step:

〈δEm〉 =
∑

i

pimδEim

〈
δE2

m

〉
=

∑

i

pim (δEim)2

Mean energy transfer and fluctuation of the overall expansion is:

〈E〉 =
∑
α


 ∏

l=1,n

pαll




(∑
m

δEαmm

)
=

∑
m

(∑
αm

pαmmδEαmm

)

=
∑

m=1,n

〈δEm〉

〈E〉2 =
∑
m

〈δEm〉2 + 2
∑

l<m

〈δEl〉 〈δEm〉

〈
E2

〉
=

∑
α


 ∏

l=1,n

pαll




(∑
m

δEαmm

)2

=
∑
α


 ∏

k=1,n

pαkk





∑

l,m

δEαllδEαmm




=
∑
m

(∑
αm

pαmm (δEαmm)2
)

+ 2
∑

l<m

∑
αm,αl

pαmmpαllδEαmmδEαll

=
∑
m

〈
δE2

m

〉
+ 2

∑

l<m

〈δEl〉 〈δEm〉
〈
E2

〉− 〈E〉2 =
∑

m=1,n

(〈
δE2

m

〉− 〈δEm〉2
)

For the expansions in Section 6.2, we have
〈
δE2

m

〉 − 〈δEm〉2 = 2 〈δEm〉2. We may therefore

introduce the following inequalities:

〈
E2

〉− 〈E〉2 ≤ 2n 〈δEmax〉2

〈E〉2 ≥ (n 〈δEmin〉)2

and prove our required result that
〈
E2

〉− 〈E〉2
〈E〉2 ≤ 2

n

( 〈δEmax〉
〈δEmin〉

)2

The ratio hδEmaxi
hδEmini approaches Pmax

Pmin
, where Pm = ∂Em

∂X is the generalised pressure, as the size

of the step reduces, and so becomes independant of n. As n = t/τθ, where τθ is a characteristic

thermal relaxation time, and t is the length of time of the expansion, the size of fluctuations in the

total energy transfer can be made negligible if the expansion takes place sufficiently slowly with

respect to τθ.

It should be clear that the result obtained here is not the same as, although it is similar to, the

usual fluctuation formula. The usual formula refers to the deviation from the mean value of the

thermodynamic variable at a given time, and is reciprocally related to the number of constituents

of the system. The formula here refers to potentially large fluctuations at any particular moment,
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for systems which may have only a few constituents, but which, when integrated over a significant

period of time, still leads to negligible long term fluctuations.
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Appendix G

Free Energy and Temperature

The free energy, F is only one of a number of thermodynamics potentials that may be associated

with a system. For example, we can also use the energy E, Gibbs function G or enthalpy H,

defined by

E

F = E − TS

G = E − TS + PV

H = E + PV

to describe the behaviour of a system. These terms can them be generalised even further, when

the number of particles is allowed to vary. The choice of which thermodynamic potential to use

entirely is a question of which constraints are acting upon the system, or which pair of the variables

S, T , P and V are controlled.

In Section 7.1, the significance of F and from that S was derived from the work that can

be extracted from an isothermal expansion of a system. In terms of classical thermodynamics

potentials, this is derived from the infinitesimal relationships

dF = dE − TdS − SdT

and the general relationship for heat and work acting upon a system

dE = TdS − PdV

which is equivalent to the statistical mechanical relationship

dE =
∑

i

Eidpi +
∑

i

pidEi

This gives

dF = −SdT − PdV
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and clearly, if the temperature is held fixed

dF = −PdV

so the change in free energy is equal to the negative of the work extracted from the system,

dW = PdV .

Now, if the temperature is not held fixed, then we clearly have

dF + dW = −SdT

If we can interpret the work as being the gain in free energy of a second system (which has no

change in entropy), such as a raised weight, we can express this equation as being a net gain in

free energy ∆F = dF + dW, of a closed system, when a quantity of entropy S is taken through a

temperature difference ∆T = dT . We will express this as

∆F = −S∆T (G.1)

and refer to this as the characteristic equation for free energy in the presence of a temperature

differences.

Adiabatic expansion The derivation above is essentially based upon the adiabatic (essentially

isolated) expansion of a gas. If we take a gas in essential isolation, and extract work from it’s

expansion, the free energy before and after is given by

F1 = E1 − T1S1

F2 = E2 − T2S2

As the expansion is reversible but thermally isolated we have ∆W = E1−E2 and S2 = S1 = S.

This gives

∆F = F2 − F1

= −∆W − (T2 − T1)S

∆F + ∆W = −S∆T

Carnot Cycle The Carnot heat engine operates by drawing energy in the form of heat Q1

from a heat bath at temperature T1, extracting W as work, and depositing Q2 in a heat bath

at temperature T2. The usual means of achieving this would be to have gas initially in contact

with the heat bath T1. This is isothermally expanded, drawing the Q1 out as work. The gas is

then removed from contact with the heat bath, and adiabatically expanded, again extracting work,

until it’s temperature falls to T2. It is then placed in contact with the T2 heat bath, isothermally
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compressed, depositing the Q2 heat, and is then isolated again, and adiabatically compressed

further until it returns to it’s initial volume, at which point, on a reversible cycle, it will have risen

back to temperature T2.

For a reversible process the entropy loss from the T1 heat bath must match the gain from the

T2 heat bath, so

S =
Q1

T1
=

Q2

T2

and conservation of energy is

Q1 = Q2 + W

This is usually rearranged to give the Carnot efficiency

W

Q1
= 1− T2

T1

However, there is an alternative way of expressing this

W = −S (T2 − T1)

which is again the characteristic equation G.1 for free energy in the presence of two different

temperatures.

Entropy Engine The two previous examples can be regarded as equations about the movement

of energy between, or within, systems, rather than an equation about the gain in free energy from

moving entropy between different temperatures. We will now demonstrate a system, based upon

the Szilard Engine, and with some similarities to the heat engines described in Chapter 8, but

which produces this characteristic equation without any energy changes taking place anywhere.

This makes it very clear that the gain in free energy is actually a consequence of the transferral of

entropy between temperatures.

First we start with two Szilard boxes, each containing a single atom, and initially of length L.

The boxes are initially at temperatures T1 and T2, but are thermally isolated. A partition is raised

in the centre of the first box, dividing the one atom gas into left and right subensembles, and a

piston is inserted between them.

Now, however, we modify the behaviour of the box, as shown in Figure G.1. The piston is

constrained so that it cannot move to the right, even when the gas is located to the left. If the gas

is on the right, the piston moves to the left, as before. However, regardless of the location of the

gas, the right most wall of the box starts to move to the left, at the same rate as a left-moving

piston would. When the wall of the box reaches the initial center, it stops. If the gas was initially

located to the left of the partition, the right wall simply moves in through empty space on the right,

until it comes against the piston, still in the center. If, on the other hand, the gas was initially

located to the right, the piston and wall move leftwards together. As long as this movement is

sufficiently slow, any work done upon the piston would be matched by work done by the wall.

In effect, no work is done upon the gas at all, as the right subensemble keeps the same volume
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Figure G.1: The Entropy Engine

throughout. At the end of this process, the wall is in the initial center, and the piston is against

the left wall. The initially left and right gas subensembles are now entirely overlapping.

The remarkable consequence of this is that we have compressed the gas to exactly half it’s

volume, but without performing any work upon it, or changing it’s energy in any other way.

We have succeeded in this by increasing the entropy of the piston, which is now in a mixture of

being on the left or the right. This effect is possible only from statistical mechanics: there is

no equivalent process in phenomenological thermodynamics by which such a compression can be

achieved without any flow of energy.

We now remove the piston states from the ends of the first box and insert them in the corre-

sponding ends of the second. We can now perform the same operation on the second Szilard box,

in the reverse direction. The second gas expands to twice it’s volume, while the piston is restored

to it’s initial state. Again, there is no contact with a heat bath, no work is extracted from the gas,

and it’s internal energy is constant throughout.

It is clear that we can continue this process indefinitely, compressing the first gas to as small

a fraction of it’s initial volume as we like, without ever performing any work upon it. However,

the cost is that we must proportionately increase the volume occupied by the second. The only

quantity that is transferred between the two systems is the mixing entropy of the piston, S = k ln 2.

However, by compressing the first gas we increase it’s free energy by kT1 ln 2, and by expanding
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the second gas, reduce it’s free energy by kT2 ln 2. The net change in free energy is

∆F = k ln 2(T1 − T2)

= −S∆T

which corresponds to the entropy being transferred through the temperature difference ∆T =

T2−T1 This provides an ’engine’ by which the free energy of a system can be increased indefinitely,

by reversibly moving entropy between parts of the system at different temperatures, yet without

any energy flow taking place.

Of course, when we attempt to extract this free energy by, for example, isothermally restoring

the system to it’s initial configuration, we simply recover the Carnot cycle efficiency. Although

this process produces the characteristic equation G.1 for the free energy change in the presence

of different temperatures, it should be clear that it’s physical basis is a purely statistical mechan-

ical effect, and quite different to the more commonly encountered manifestation in the adiabatic

expansion and Carnot Cycle.
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Appendix H

Free Energy and Non-Equilibrium

Systems

In Section 7.1 the free energy of a system in a canonical thermodynamical state ρ = 1
Z e¡ H

kT was

derived in terms of it’s partition function Z = Tr
[
e¡ H

kT

]
=

∑
i e¡ Ei

kT as F = −kT ln Z.

When the Hilbert space is split into subspaces with partition functions Za =
∑

i‰a e¡ Ei
kT , the

equilibrium probability of the density matrix being in the subspace is

pa =
∑

i‰a

pi =
∑

i‰a e¡ Ei
kT

∑
i e¡ Ei

kT

=
Za

Z

From this we can express the free energy of a density matrix in equilibrium in the subspace by

Fa = F − kT ln pa

When the Hilbert space is divided into several orthogonal subspaces, so that Z =
∑

α Zα, we

have

F =
∑
α

pαFα + kT
∑
α

pα ln pα

= −kT ln

(∑
α

e¡ Fα
kT

)

and also

pa =
e¡ Fa

kT

∑
α e¡ Fα

kT

The equilibrium density matrix may be expressed as

ρ =
∑
α

pαρα

=
1
Z

∑
α

e¡ Fa
kT ρα
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Note that this is expressed in terms of the free energies of the subensembles, rather than the

energies of the microstates.

We now wish to consider what happens when an density matrix is composed of the same equi-

librium subensembles ρα but for which the mixing probabilities p0
α are not in thermal equilibrium1

ρ0 =
∑
α

p0
αρα

We know the entropy of this matrix from the mixing equation

S0 =
∑
α

p0
αSα − k

∑
α

p0
α ln p0

α

However, it may seem unclear whether the free energy is at all meaningful in this situation. We

cannot simply use F as the equations would not agree. At the same time, there is a well defined

temperature associated with the system. We need to develop a well defined generalisation of the

equilibrium equations above.

We are going to proceed by proposing a non-equilibrium version of the partition function

Z 0 =
∑
α

Dαe¡ Fa
kT

where the Dα are a set of factors which determine the extent to which the system is out of

equilibrium. If all Dα = 1 then the system is in equilibrium. We define the Da from the constraint
∑

α p0
α ln Dα = 0 to give

kT ln Da = (Fa + kT ln p0
a)−

∑
α

p0
α (Fα + kT ln p0

α)

which allows us to write

p0
a =

1
Z 0 Dae¡ Fa

kT

ρ0 =
1
Z 0

∑
α

Dαe¡ Fa
kT ρα

in analogy to our equilibrium equations.

We would now like to express the non-equilibrium free energy as just F 0 = −kT ln Z 0. Our

primary justification for believing this is because the mean energy E, the non-equilibrium entropy

S0 and the subensemble temperature T can be shown to be related by

E − TS0 = −kT ln Z 0

which is precisely the relationship we would like a free energy to fulfil. However, the operational

definition free energy, that makes it a useful to use, is that it corresponds to the work required to
1We may imagine that each of the subspaces corresponds to a separate ’box’, between which transitions are

inhibited. We can then easily prepare a system in which the ’boxes’ are each in equilibrium with some heat bath,

but the probabilities of the ’boxes’ being occupied are not in an equilibrium. As long as the thermal relaxation time

for transitions between boxes is very large, this will be stable.
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put the system into some reference state, by an isothermal procedure. We must show the work

required to change the state matches the change in F 0. To be sure that this is valid, the final

reference state should be one in which the subensembles occur with equilibrium probability.

Let us start with a particularly simple example, consisting of Szilard box and a piston system.

It is the piston system that we are going to focus upon. The piston system is initially in one of two

states, which have the same internal entropies SP , energies Ep and are in equilibrium temperature

T, which for simplicity will be the same temperature as the Szilard box. The ’internal’ free energy

of the piston states are therefore Fp = Ep − TSp. In a ’thermal equilibrium’ each of the piston

states would be equally likely and in an equilibrium mixture of piston states, the free energy would

be F = Fp − kT ln 2.

If we placed two piston states in opposite ends of the Szilard box, and compress the gas until

each piston state was found in the center of the box, the isothermal work required is just kT ln 2.

The piston is now no longer in the mixture, and has free energy FP . When the piston is removed,

the gas expands to refill the entire box. This allows us to isothermally put the equilibrium state

into a reference state, with a work requirement of kT ln 2. We could also reverse the procedure, and

allow the piston reference state to expand into an equilibrium mixture, extracting kT ln 2 work.

We now consider what happens if the initial piston states occur with the more general proba-

bilities of p and 1− p. We will again place the two piston states at each end of the box, but now

we compress the two sides by different amounts, so the piston ends up in some position Y , not

necessarily the center. If the piston is on the left, with probability p, we allow it to compress the

gas to the right of Y . This requires a work of kT ln
(

2
1¡Y

)
. If the piston is on the right, with

probability (1− p), the gas is compressed to the left of Y, and the work required is kT ln
(

2
1+Y

)
.

The mean work requirement is therefore

W

kT
= p ln

(
2

1− Y

)
+ (1− p) ln

(
2

1 + Y

)

This has its smallest value when p =
(

1¡Y
2

)
and therefore

W = −kT (p ln p + (1− p) ln(1− p))

This leaves the piston at position Y = (1 − 2p), with the one atom gas located to the left of

the piston, with probability
(

1+Y
2

)
and to the right with probability

(
1¡Y

2

)
. Had we inserted a

partition into the box at position Y , we would have precisely these probabilities for the location

of the one atom gas. The piston can therefore be reversibly removed from the box. Had the

compression of the gas left the piston at some other value of Y 0, removing and reinserting the

piston at Y 0 would lead to a rearrangement of the probabilities of the one atom gas. This would

not be a reversible procedure. This demonstrates that the work requirement to reversibly put the

non-equilibrium mixture of piston states into the reference state is exactly −T∆S, where ∆S is

just the mixing entropy of the non-equilibrium state.

We consider this to be the required generalisation of isothermal compression. For the change

in free energy to be equal to the work done, the initial free energy must be
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F 0 = Fp + kT (p ln p + (1− p) ln(1− p))

This can be readily generalised to a situation with many different subensembles and with

different free energies in each subensemble, but with all subensembles at the same temperature2

to yield

F 0 =
∑
α

p0
α (Fα + kT ln p0

α)

= E − TS0

= −kT ln Z 0

which is the desired result, and justifies the form of the non-equilibrium partition function.

With regard to the other relationships involving the free energy, we find these generalise to

F 0 = −kT ln

(∑
α

Dαe¡ Fα
kT

)

p0
a =

DaZa

Z 0

Fa = F 0 − kT ln
(

p0
a

Da

)

These relations are less useful than they might appear. We have justified the existence of a

free energy for situations where a system is in a stable, non-equilibrium state, but has a well

defined temperature. However the dependance upon the values of Dα makes the non-equilibrium

partition function of limited value when these are changeable (unless they can be constrained to

be changeable in a well defined way eg. when the system is not isolated, the Dα will approach

1, typically with an exponential decay, and over a time period of the same order as the thermal

relaxation time). It should be noted, however, that the non-equilibrium state will have a higher

free energy than the equivalent equilibrium state. As the system approaches equilibrium this extra

free energy will be lost in the process of thermalisation.

2If the internal states of the piston are assumed to be thermally isolated from the Szilard box, then the com-

pression may take place at a different temperature. While this complicates the process, it will still be consistent

with the free energy defined here, taking into account the results of Appendix G, where there is more than one

temperature present.
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