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Abstract. We re-examine the claim made by Englert, Scully, Süssman and Walther that in certain ‘Welcher Weg’ (Which
Way) interference experiments, the Bohm trajectories behave in such a bizarre and unacceptable way that they must be
considered as unreliable and even ‘surreal’. We show that this claim cannot be correct and is based on an incorrect use of the
Bohm approach.
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INTRODUCTION.

There is a general perception abroad, although not shared by everybody, that there must be something fundamentally
wrong with the Bohm interpretation [BI] of quantum mechanics and if pushed to its limits, BI must produce experi-
mental results that are different from those calculated using the standard approach. This sentiment seems to be based
on an instinctive rejection of the approach because, in discussing trajectories, it seems to go against the spirit of the
uncertainty principle. Furthermore the standard formalism, as usually presented, does not seem to support the notion
of a particle trajectory and it appears as if something new is added. But does the uncertainty principle actually rule this
out?

Certainly the uncertainty principle rules out the possibility ofmeasuringboth position and momentum simultane-
ously. This fact is not in dispute. The failure of experiments designed to achieve such measurements shows clearly
that it cannot be done. Furthermore these attempts bring out clearly why we cannot hope that some cunningly de-
signed experiment in the future will enable us to avoid this difficulty which seems an indisputable feature of quantum
processes.

The standard view takes the uncertainty principle to mean that a quantum particle does notpossesssimultaneous
position and momentum and exists as some nebulous entity that denies any pictorial representation [1]. But how can we
be sure this is the right conclusion? After all no experiment can confirm this conclusion. The experiments merely show
that the values of all its properties cannot be known to us simultaneously. It is important to realise that the standard
view is based on anassumption, namely, that a quantum particle does not possess simultaneously well defined values
of all its properties.

However the opposite assumption is also possible, namely, that a quantum particledoes possessall its properties
simultaneously and all the uncertainty principle tells us is that we cannot hope to know the values of all these properties
simultaneously. This is exactly what the Bohm interpretation does [2] [3]; it makes the assumption and then explores
the consequences that follow from this assumption. There is no ideology involved, just a re-examination of the quantum
formalism with this assumption in mind.

The first question one can raise is, “Is it possible to use the present formalism using this assumption without adding
any new mathematical content to the theory?” What Bohm [4] showed was that this is indeed possible and that one can
provide a logically consistent interpretation based on particle trajectories. Notice it is not being claimed that quantum
particles actually follow trajectories, merely that if one assumes they do, then it is possible to produce a consistent
account of quantum phenomena. The bonus is that the account is much less puzzling than the standard account with
all its paradoxes.

How then does the BI achieve what John Bell [5] called the ‘impossible’? Actually it is very simple, so simple that
I first thought there must be a catch lurking around the corner. All that one needs to do is to look at the real part of the
Schrödinger equation under the polar decomposition of the wave functionψ(r, t) = R(r, t)exp[iS(r, t)] to find
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∂S(r, t)
∂t

+
(∇S(r, t))2

2m
+Q(r, t)+V (r, t) = 0 (1)

whereS(r, t) is the phase of the wave function,V (r, t) the classical potential andQ(r, t) =−∇2R(r, t)/2mR(r, t),
whereR(r, t) is the amplitude of the wave function. I want to emphasise that this result emerges from the Schrödinger
equation without adding anything new to the mathematics as can easily be checked.

The probabilistic character of the interpretation enters because it is not possible to produce a quantum particle
with given specific simultaneous values of{r,p}. All we have is a distribution of possible values determined by
the initial wave function. Thus the probability of a particle being at some initial positionr0 is given byP (r0, t0) =
|ψ(r0, t0)|2 = R2(r0, t0). The imaginary part of the Schrödinger equation gives the conservation of probability which
ensures agreement with the standard approach at all future times.

Equation (1) looks like the generalisation of the classical Hamilton-Jacobi equation. Indeed ifQ = 0 andS the
classical action we would have exactly the classical H-J equation. In this case we have the canonical relations∂S

∂t =−E
and∇S = p, which shows that the H-J equation is just the conservation of energy equation. What Bohm did was to
exploit this analogy and assume that, in the quantum case, the momentum of the particle is given by

pB(r, t) =∇S(r, t) (2)

The particle is then assumed to be specified by its positionr and its momentumpB giving rise to a well defined phase
space in which to plot the behaviour of the quantum particle. We can integrate equation (2) and find expressions for
a set of trajectories. We then assume the quantum particle will follow one of these trajectories, the specific trajectory
will be determined by the initial position of the particle. Examples of how all this works have been given in Bohm and
Hiley [3] and Holland [6].

All the examples discussed in the above two references show that the model provides a logically consistent picture
of how particles could behave to produce the observed experimental results. But will the approach always produce
trajectories that are ‘reasonable’ and do not predict some form of ‘physically unacceptable’ behaviour? Not so claims
Englert, Scully, Süssman and Walther [ESSW] [7]. They claim the trajectories central to BI produce such bizarre
behaviour that they must be considered ‘untrustworthy’ and even ‘surreal’. Scully [9] goes further and claim that this
behaviour is contrary to that expected from standard quantum mechanics.

One should immediately be worried by the veracity of such a claim. The BI uses the standard formalism, not in
terms of complex numbers, but in terms of the real and imaginary parts of these self-same complex numbers. It adds
no new mathematical structure. How is it possible to produce different results?

But wait a moment. We have introduced an additional assumption, namely, that the momentum possessed by the
particle is given by equation (2). That, surely, could account for the difference claimed by Scully? Let us examine this
point more closely. First we start by reminding ourselves of the probability current density. In the standard theory this
is given by the expression

j =
1

2mi
[ψ∗(∇ψ)− (∇ψ∗)ψ] (3)

And if we write the wave function asψ = Rexp(iS) we find

j = R2∇S

m
(4)

In other words the Bohm momentum is simply the mass probability current. This means that the Bohm trajectories are
simply the probability current streamlines. Standard quantum mechanics identifies the probability current with the flux
of particles flowing in a certain direction. All Bohm does is to assume that individual particles stick to the flux lines so
if the Bohm trajectories are going to do something bizarre, then the probability currents are going to predict exactly
the same bizarre behaviour. There cannot be any other conclusion because the mathematical structure is identical in
both cases.

So what about the claims to the contrary of ESSW [7] and others [10] [11]? Unfortunately, as we will show in this
paper, their conclusions have been reached by not analysing the BI correctly. Before discussing these matters further
let us look at how ESSW in particular reach their conclusions.



FIGURE 1. Sketch of the Mach-Zender interferometer with beam splitterBS2 in place. In this case it acts like a wave detector.

FIGURE 2. Interferometer withBS2 removed. This makes the interferometer acting like a particle detector.

THE ‘WHICH WAY’ EXPERIMENTS

The starting point for the criticism is the Mach-Zender interferometer shown in Figure 1. Since the challenge by
ESSW involves a Mach-Zender setup using atoms, I will only discuss the interferometer using particles. A discussion
entailing photons requires us to generalise the BI to include field theory [12]. This is relatively straight forward and
leads to the same conclusion. However the formalism becomes considerably more complicated so there is little to be
gained by going into the details in this paper.

As is well known with the beam splitterBS2 in place the Mach-Zender behaves like a wave detector, because
interference between the two paths causes all the particles to end up at the detectorD1. The reason for this is straight
forward by standard quantum mechanics. The final wave function atD1 is the sum of the wave functions travelling
down each arm, while the final wave function atD2 is the difference of these two wave functions. By adjusting the
phases and the amplitudes we can arrange the wave function atD2 to be zero.

With the beam splitterBS2 removed the interferometer behaves like a particle detector. The final wave function at
D1 is simply the wave function travelling in channel #1, while the final wave function atD2 is the single wave function
travelling down channel #2. (See Figure 2). In this case ifBS1 is ‘half-silvered’, 50% of the particles arrive at each
detector.

Now let us move on to consider how the BI accounts for the particle behaviour in these two forms of the Mach-
Zender interferometer. WhenBS2 is in place it is easy to see how all the trajectories end up atD1. There is a fifty-fifty
split in the trajectories between channels #1 and #2 atBS1. When they reachBS2 the trajectories in channel #1 go
straight throughBS2, while those in channel #2 are deflected byBS2 to reachD1. These trajectories are sketched in
Figure3. One important feature to notice about this diagram is that the trajectories do not cross. This is a consequence



FIGURE 3. Sketch of trajectories withBS2 in place.

FIGURE 4. Sketch of the Bohm trajectories withoutBS2 in place.

of the single valued nature of the field equation (2).
The case when we removeBS2 is interesting. The trajectories do not cross atBS2 so that the trajectories travelling

along channel #1 bend towards detectorD2 while those following channel #2 bend towardsD1. The behaviour of
these trajectories is shown in Figure 4. The reason for this behaviour is that the wave functions in the regionI2

constructively interfere to produce a quantum potential in that region and this potential reflects the trajectories in the
appropriate fashion. The details of these calculations will be found in Hiley and Callaghan [13].

There is little to distinguish between the standard approach and that of the BI in these two examples. The real
interest and source of the disagreement is when some form of detector is placed in channel #2 to find which way a
particular particle will go. This set up is shown in Figure 5. We now go on to discuss this situation.

MACH-ZENDER WITH A CAVITY PLACED IN CHANNEL #2

The detector, in this case a micromaser cavity, is placed in channel #2 and acts as the ‘which way’ detector. The
detector takes the form of a microwave cavity tuned to the internal energy of the atoms used in the experiment. This
detector, if correctly tuned, has the property that it will remove the internal energy from an excited atom passing
through it without introducing any phase decoherence in the centre of mass momentum of the atom.

One such experiment used Rubidium atoms and the micromaser was tuned to 21.5GHz which corresponded
precisely to transitions between the two Rydberg states63p3/2 and61d5/2. An excellent discussion of the details
of the experiment and the theory behind the functioning of the micromaser will be found in ESSW [7] and references



FIGURE 5. Interferometer with cavity in place andBS2 removed.

therein. The details will not concern us here as they are not in dispute. Here we are interested only in clarifying the
principles used by ESSW to arrive at their conclusions about the behaviour of the Bohm trajectories. Again we will
simplify the discussion by assuming the micromaser is 100% efficient. This assumption may not be true in an actual
experiment but it is not difficult to modify our results to accommodate this feature. It does not change the principle of
the argument. This point has been discussed in detail in Hiley and Callaghan [13]

When the cavity is added to channel #2, the essential question concerns the behaviour of the trajectories as they pass
through the regionI2 when the beam-splitterBS2 is removed. Standard quantum mechanics tells us that the particles
that arrive atD1 have not passed through the cavity and therefore still retain their internal energy as can easily be
checked by experiment. The particles that pass along channel #2 do lose their internal energy and end up at detector
D2 having lost their internal energy. This result is true whether or not we make a measurement to determine the energy
in the micromaser.

All of this is quite straightforward and not controversial. What allegedly causes the problem are the Bohm trajec-
tories. ESSW fix their attention on the fact that Bohm trajectories ‘do not cross’. Since this must always hold even in
the case when the cavity is added to the interferometer, they conclude that the trajectories must remain the same as
sketched in Figure 4 above. If this were a correct picture of the behaviour of the trajectories, it would be truly bizarre.
The atoms that travel in channel #1end up at detectorD2. However they have lost their internal energy to the cavity
even though the atoms have been nowhere near the cavity. On the other hand the atoms travelling in channel #2 go
through the cavity, yet retain their internal energy!

Earlier attempts to explain this result was to claim that this was just another example of the EPR paradox. Dewdney,
Hardy and Squires [14], Dürr, Fusseder and Goldstein [15] and even Hiley, Callaghan and Maroney [8] argued in this
manner, justifying their conclusion by arguing this is just the true nature of quantum mechanics. Dürr et al [15] remark

This is somewhat surprising, but if we have learned anything by now about quantum theory, we should
have learned to expect surprises.

In spite of such sentiments I was unhappy that such an extreme form of non-locality was required particularly as it
involved a non-local transfer of a quantum of energy. Intuitively that felt very wrong, but I could not come up with a
convincing argument showing that inmustbe wrong. It was when I was reviewing the situation with Bob Callaghan
that it suddenly dawned on me why this could not be correct.

To make this clear it was necessary to recall that the Bohm trajectories were none other than the streamlines of
the probability. For me this fact implies that if the trajectories ‘don’t cross’ then the probability current streamlines
‘don’t cross’, a fact of which ESSW were well aware. But if this conclusion is correct then there must necessarily
be a contradiction between the predictions using the linearity of the Schrödinger equation and those based on the
probability current. Both of these are discussed in terms of standard quantum theory so there is clearly a possibility of
a contradiction within quantum theory itself.

TRAJECTORIES CAN ‘CROSS’.

To bring out this contradiction, let us replace the 50-50 beam splitterBS1 with a beam splitter that reflects 75% of
the atoms, while allowing the remaining 25% to be transmitted. According to the argument using wave functions, this



means that 75% of the atoms reachD1, while only 25% reachD2. But according to the probability current, assuming
that streamlines don’t cross, 75% are deflected intoD2 leaving the rest deflected intoD1. The two results do not add
up.

Of course it could be that 50% of the streamlines in channel #1 pass straight through the regionI2 and only 25% of
these deflected intoD2. Clearly this can be achieved without the need to have crossing trajectories. But then we have
standard quantum mechanics reaching the conclusion that 50% of the atoms that lose their energy to the cavity do not
actually go through the cavity! Clearly we have to look much more closely at the behaviour of the streamlines in the
regionI2.

The simplest way to do this is to look at the details of the calculation of the trajectories using the BI. Let the wave
function of the excited atoms in channel #1 beψ1(r) and the wave function of the de-excited atoms after they have
passed through the cavity beψ2(r). Let the wave function of the excited cavity beφe while that of the unexcited cavity
beφue. The wave function in the regionI2 is then

Ψ(r,φ) = ψ1(r)φue +ψ2(r)φe (5)

The quantum potential acting on the atoms is given byQ =−∇2
rR/2mR whereR is obtained from

Ψ = ReiS = (R1e
iS1Ruee

iSue)+(R2e
iS2Ree

iSe) (6)

so that
R2 = (R1Rue)2 +(R2Re)2 +2R1R2RueRe cos∆S (7)

where∆S = (S1 +Sue)− (S2 +Se).
Now we come to the crucial part of the discussion. We need to evaluateR for theactualtrajectory each atom takes.

The quantum potential is then calculated at theactualposition of the atom and theactualstate of the cavity in each
case. Consider an atom following a trajectory in channel #1. Since the interaction with the cavity is local, the atom
will not lose its internal energy to the cavity. Thus the probability of the cavitybeingexcited must be zero. Remember
in BI any systempossessesvalues for all its properties. This means thatRe must be zero for this specific atom. Thus
each and every atom in channel #1 is acted on by a quantum potential calculated fromR = R1Rue so there is no phase
difference in the regionI2 and no possibility of interference. Thus the atom passes straight through the regionI2 and
arrives at the detectorD1 so that the atoms arriving atD1 will not have lost their energy.

On the other hand when the atom passes through the cavity, it gives up its internal energy to the cavity with 100%
efficiency. Thus the probability of the cavitybeingunexcited is zero for this atom, so thatRue must be zero for this
atom. Now the quantum potential acting on each atom in channel #2 is calculated fromR = R2Re. Again there is no
interference present and the atoms again go straight through reachingD2 having lost their internal energy. Thus there
is no bizarre behaviour.

We can confirm this result looking at the phase and usingp = ∇rS to calculate the trajectories directly. In the
general case when the wave function is given by equation (5), the phase is

tanS =
(R1Rue)sin(S1 +Sue)+(R2Re)sin(S2 +Se)
(R1Rue)cos(S1 +Sue)+(R2Re)cos(S2 +Se)

(8)

Thus for an atom in channel #1 this reduces toS = S1 +Sue by the arguments used in the paragraph above. This
shows that the atoms in channel #1 go straight throughI2 and arrive at detectorD1. It is then obvious that the atoms
in channel #2 also go straight throughI2 and arrive atD2. This confirms that there is no bizarre behaviour predicted
on the BI.

We have taken a very simple example here, making a number of simplifying assumptions. However Hiley and
Callaghan [13] have considered a variety of different detectors placed in channel #2, going into many detailed questions
that we have not considered here. The result is always the same. The behaviour of the atoms is never as predicted by
ESSW [7]

CONCLUSIONS.

Our results show that whenever a ‘which way’ detector is introduced into one of the arms of the Mach-Zender
interferometer, the Bohm trajectories pass straight through the regionI2. This implies there is no contradiction of



the type suggested by ESSW [7] and Vaidman and Aharonov [10]. The particles that pass through the cavity give up
their internal energy and arrive at detectorD1 exactly as the standard approach predicts. To achieve this we do seem
to have trajectories that ‘cross’. Has this violated the principle that led ESSW to insist that ‘trajectories do not cross’?
Clearly this is not the case, so how do we understand this situation?

There is one example where we know that trajectories ‘cross’ and that is in the case where we have a mixed
state composed of two incoherent wave function components. In this case it is obvious to see what is going on.
There is no interference between the two components of the wave function so they behave independently. Because
of this independence the effective configuration space has double the number of dimensions. In this bigger space the
trajectories do not cross, so the non-crossing rule still holds but only in the higher dimensionalconfigurationspace.
But in the case that we have been considering above, the two wave functions,ψ1(r, t) andψ2(r, t) are still coherent
and therefore not independent, so why do the trajectories seem to cross?

Again the problem is that we have chosen a configuration space that has too few dimensions. This gives the
appearance that the trajectories cross whereas they do not cross in the appropriate space. What distinguishes the
two sets of trajectories is the internal energy of the atoms that follow the trajectories. In order to take this difference
into account, we must double the dimensionality of the configuration space. In this bigger configuration space the
trajectories do not cross. Thus the principle of non-crossing trajectories upon which ESSW based their argument is not
wrongper se. What was wrong was that ESSW did not consider a big enough configuration space in which to discuss
the trajectories. When this fact is recognised then BI gives a completely acceptable account of the experiment. The
atoms giving up their internal energy go through the cavity and end up atD2, while the atoms remaining excited do
not go through the cavity and end up atD1. Thus both standard quantum mechanics and the BI give exactly the same
predictions for the outcome of these ‘which way’ experiments. Thus Scully’s conclusion that [9]

Bohm trajectories are not faithful to the physics of the problem, they are surrealistic.

cannot be sustained. There is no difference between the experimental predictions using the standard formalism and
those using the BI.
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