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QUO VADIS MODULARITY  
IN THE 2020S? 

Michael S.C. Thomas and Daniel Brady    

Both of us had the privilege of being postdoctoral fellows for Annette: one of us 
(MT) when Annette set up her own research unit in 1998 after leaving MRC 
Cognitive Development Unit, the other (DB) in Annette’s !nal project, an in-
vestigation of infant development in Down syndrome (DS) and its link with 
lifelong elevated risk for Alzheimer’s disease in the syndrome (Karmilo"-Smith 
et al., 2016). In this chapter, we consider the idea of modularity because it !gured 
in both our collaborations with Annette (henceforth, AKS) – but between the two 
collaborations, the usage of the concept had changed. 

For MT, his !rst publication with AKS was a commentary that challenged the 
use of the Fodorian sense of modularity (Fodor, 1983) to explain de!cits in 
developmental disorders, as it featured in four papers then appearing in the journal 
Learning and Individual Di!erences. We entitled our commentary, ‘Quo vadis 
modularity in the 1990s?’ (or, for non-Latin speakers, ‘modularity, where are you 
going?’; Thomas & Karmilo"-Smith, 1999). For DB, modularity featured in his 
use of Graph Theoretic methods to analyse time series correlations between the 
electroencephalogram (EEG) data recorded from electrodes spread across the 
scalps of infants with DS as they watched a video. Graph Theory was deployed to 
understand more about the functional connectivity of these infants’ brains - which 
regions appeared to be working with other regions - and the relation of functional 
connectivity both to the infants' chronological age and to their cognitive ability. 

For this Festschrift volume, as we enter the third decade of the 21st century, we 
can ask this question once again: quo vadis, modularity? In this chapter, we will see 
that over the decades and with the advance of neuroscience, the notion of 
modularity has been recast: from an a priori design principle which it would make 
good sense for potential cognitive systems to employ, to a data-driven concept 
based on how the brain is actually working. 



Modularity as an advantageous a priori design principle 

In 1998, when MT joined AKS’s new research group, the Neurocognitive 
Development Unit, based at London’s Institute of Child Health, AKS set him three 
goals. The !rst was to advance research on neurodevelopmental disorders, pursing 
ideas in her seminal paper The Key to Developmental Disorders Is Development Itself 
(Karmilo"-Smith, 1998). This involved investigating the genetic syndrome Williams 
syndrome (WS), characterised by overall learning disability, but relative strengths in 
language and face recognition, and weaknesses in visuospatial cognition. But, AKS 
asked, was language truly a strength? Was language developing typically, in-
dependently of the rest of cognition? How come it was not at chronological age 
level? How did language !t with the overall pattern of learning disability? This line 
of work was reasonably successful: a set of studies suggested that language skills in 
WS were broadly in line with overall mental age, but with subtle patterns of un-
evenness – that is, atypicality – such as in semantic compared to phonological skills 
(Thomas et al., 2001; Laing et al., 2005; Ansari et al., 2003; Thomas & Karmilo"- 
Smith, 2005; Thomas, Forrester, & Richardson, 2006; Thomas, 2006). A similar 
pattern was found in detailed investigations of face processing, although the beha-
vioural strength here was more marked, and there was greater evidence for atypical 
underlying cognitive processes (Annaz, Karmilo"-Smith, Johnson, & Thomas, 
2009; Grice et al., 2001; Karmilo"-Smith et al., 2004). 

The second goal AKS set for MT was to begin a programme of computational 
modelling. Since there existed at the time reasonable computational models of ty-
pical cognitive development, based on arti!cial neural networks, was it possible to 
build computational models of developmental disorders, such as of language de-
velopment in WS? This work was reasonably successful as well. MT built a model of 
the acquisition of morphosyntax in WS, where di"erent types of atypical constraint 
(arising from the structure of semantic representations, phonology representations, 
or computational properties learning to mediate the relationship between language 
representations) could shape developmental trajectories in ways that did or did not 
re#ect those observed in individuals with WS (Thomas & Karmilo"-Smith, 2003a). 
The model made more concrete the theoretical notion that de!cits in develop-
mental disorders were the result of atypical constraints acting on the developmental 
process by specifying that process in neurocomputational terms. 

The third goal proved more challenging. AKS wanted MT to build a com-
putational model of representational redescription (RR). RR was AKS’s account of 
how children could develop cognitive #exibility. It was based on the proposal that 
there was a general phase of cognitive development lying beyond behavioural 
mastery, where the knowledge underlying mastery of a given ability becomes both 
more accessible to conscious awareness (or more ‘explicit’) and also more open to 
#exible application (Karmilo"-Smith, 1992). For MT, this work did not go so 
well. He ran into a stumbling block when attempting to think about RR in 
computational terms. Was RR, on the one hand, a process intrinsic to a cognitive 
system that was acquiring some behaviour, such that even when the system had 
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achieved behavioural mastery, it somehow went on to reorganise its knowledge 
into a form that could be ‘o"ered up’ to other cognitive systems, such as 
those involved in cognitive control, verbal report, or metacognition? What would 
drive this reorganisation, if mastery was already achieved? Or was RR, on the 
other hand, a process concerned with the enabling of latent, pre-existing con-
nectivity between di"erent cognitive systems, so that once the internal representa-
tions of the target system began to exhibit interesting internal structures or 
covariations relevant to other systems (cognitive control, verbal report, etc.), these 
latent connections would begin to strengthen? Could RR involve both intrinsic 
and connectivity elements? The dilemma was hard to resolve, but theoretical 
clari!cation was necessary prior to proceeding with implementation in a com-
putational model. 

Meanwhile, the attention of both AKS and MT was focused on atypical 
development, and RR moved to the backburner. In her !nal years, AKS was 
perhaps on the verge of returning to RR: she noted the possibility that brain 
imaging might test the RR hypothesis through studying emerging hierarchical 
network structure in ‘resting state’ functional brain imaging data (Karmilo"-Smith, 
2010); and viewed Dehaene’s proposal of a global workspace for #exible use of 
knowledge (Dehaene et al., 2014) as a possible brain basis for the concept of RR 
(Karmilo"-Smith, 2015). It is fantastic to see McClelland and his team (this vo-
lume) taking RR ideas forward in a neurocomputational framework, as well as 
Hughes and Edgin (this volume), considering a link between RR and sleep, and 
Plunkett (this volume) consider RR in relation to vocabulary development. No 
competing theory has emerged in the meantime to explain the developmental 
emergence of explicit knowledge and cognitive #exibility in children. 

However, behind all three of these goals lay a pervasive idea that was key to 
AKS’s thinking at the time – that of modularity. There were, in the 1990s, ex-
planations of uneven cognitive pro!les in developmental disorders that made 
reference to innate modules. For AKS, this was the wrong way to go. For her, 
modules were an outcome of development, not a precursor to it (Karmilo"-Smith, 
1992, 1994, 1998, 2009, 2015). Multiple convergent methods within cognitive 
neuroscience, including computational modelling and functional brain imaging, 
would be necessary to specify the nature of developmental processes. And even 
when modularity had emerged in a given domain, somehow development could 
move beyond it, so that children could begin to show insight into their own 
behaviour. 

Let us take a moment to recapitulate the original, Fodorian sense of what a 
module was (Fodor, 1983), around which this debate revolved. The theory was 
based on a cognitivist approach that sought to cleave cognition from perception, and 
consider each as a decomposable into a set of specialised sub-processes. Fodor 
constructed his arguments by appealing to what would constitute a sensible way to 
design a cognitive system, grounded by (limited) empirical reference to intuitive 
phenomena such as visual illusions, and supported by thought experiments. The 
key idea was encapsulation of information.1 Specialised and dedicated processing 
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systems would contain their own dedicated information; these systems would be 
impervious to information from outside in the rest of the cognitive system. 
Intuitively, it is evident that we continue to see visual illusions even when we 
know they are illusions. For Fodor, this is because low-level vision is a module – 
fast, automatic, self-contained, independently delivering its results to the rest of 
cognition. Indeed, it would be a poor design for a perceptual system to rely on 
background knowledge: if you see a tiger leaping at you while out shopping, you 
need to duck, not think about whether it’s likely you’ll encounter a tiger in the 
shopping mall. Fodor distinguished perceptual modules from the central cognitive 
system. The central system is involved in thought and reasoning, where in his view 
background knowledge is crucial to its operation. Should you go to the shops 
today? A vast range of factors might be relevant (including the chance of tigers). 
Fodor suggested that somewhere in between perception and the central system, 
there might be cognitive modules for self-contained cognitive domains such as 
language, or perhaps syntax. Along with properties of fast processing, automatic 
operation and encapsulated information, these cognitive modules would likely be 
innately speci!ed, hardwired (that is, neurally speci!c), and not assembled from 
other cognitive components. Modularity amounted to a cluster concept, a set of 
properties that Fodor thought would likely hang together within the architecture 
of the cognitive system. 

The idea of cognitive modules !tted with what was observed in cases of speci!c 
loss of abilities following acquired focal brain damage in adults – as if a bit of the 
cognitive system were implemented by a bit of the brain, and damage to that bit of 
the brain could produce a speci!c de!cit in the corresponding ability. But in 
1990s, some researchers were trying to apply this adult-based framework to un-
even cognitive pro!les in developmental disorders, such as autism, developmental 
language disorder (then called Speci!c Language Impairment), dyslexia, and 
prosopagnosia. For AKS, however, Fodor’s framework left out a key aspect: 
development. The increasing understanding of functional brain development, as 
articulated in Rethinking Innateness (Elman et al., 1996; see Johnson, this volume) 
suggested that although modularity may be characteristic of the adult state, it was 
likely a product of developmental processes from an initially less di"erentiated and 
specialised system. Therefore, the static adult framework was inappropriate to 
characterise developmental disorders. AKS and MT spent some time making 
this argument more concrete by comparing the di"erent pro!les of de!cits 
in computational models of developmental de!cits versus models of acquired 
de!cits (Thomas, & Karmilo"-Smith, 2002; Thomas, & Richardson, 2006; 
Thomas et al. 2006). 

In one sense, Fodor’s notion of modularity is hard to argue against – and that 
sense is falsi"cation. The six proposed properties of a module were not necessary 
and su$cient conditions, just properties likely to cluster together, based on what 
would be a sensible way to design a cognitive system (and some supporting in-
tuitive phenomena). The absence of one or more feature from the cluster for some 
target behaviour would not be enough to reject the idea. (For example, visual 
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word recognition is learned, not innate, but shows other characteristics of modular 
function – it is fast, automatic, can be speci!cally lost after acquired brain damage 
in alexia – but its lack of innateness would not serve to falsify the cluster concept of 
modularity; maybe some modules can be learned, Fodor would say.) So the idea of 
modularity was never rejected. 

The main #aw with the original concept of modularity, and indeed of the 
cognitivist approach of the 1980s and early 1990s more generally, was that it dealt 
in ways that cognitive systems could work – hence the close contemporary af-
!liation of cognitive theory with arti!cial intelligence research. However, it did 
not necessarily deal with the way the cognitive system does work, which is con-
strained by its actual biology and the attendant evolutionary history that shaped the 
biology. The actual way the cognitive system works has become more apparent 
with progress in cognitive neuroscience over the intervening years. The brain 
operates via content-speci!c systems and modulatory systems (both focal and 
di"use) which coordinate their operation; it operates via distributed networks of 
interacting systems which are con!gured dynamically according to task and 
context; hierarchical systems learn to extract ever higher-order invariances from 
sensory input or to generate motor output; cortical systems are continuously in-
teracting with limbic systems whose structures re#ect the deeper evolutionary 
goals of the species through the emotions. The increasing in#uence of cognitive 
neuroscience led some commentators to revise how the notion of modularity 
should usefully be deployed. Already by the end of the century, Coltheart (1999) 
was arguing that modularity should be ascribed to a cognitive system solely on the 
basis of the system being domain speci"c. This did not even preserve the notion of 
information encapsulation that was the motivating factor in Fodor’s original 
conception. 

Modularity as a data-driven description of brain structure 
and function 

Let us pause and let some time pass. AKS has pursued her neuroconstructivist 
agenda, using cross-syndrome comparisons in an attempt to triangulate the de-
velopmental constraints that operate on cognition, in domains such as language 
and face recognition, and has continued to integrate wider sets of developmental 
cognitive neuroscience methods. MT has left to broaden his approach to thinking 
about di"erent types of cognitive variation beyond disorders, such as intelligence 
and giftedness, and how to link cognitive neuroscience !ndings to education. Less 
is heard of modularity, and less still of RR. We come to Annette’s !nal project. 

The London Down Syndrome (LonDownS) Consortium was launched in 
2013, funded by a Wellcome Trust Strategic grant. Its aim was to investigate the 
link between Alzheimer’s disease and DS. Adults with DS are at greater risk of 
developing Alzheimer’s disease (AD) compared to the general population, and the 
onset of AD tends to occur at an earlier age (Head, Powell, Gold, & Schmitt, 
2012). One reason is that one of the key genes implicated in AD, the amyloid beta 
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precursor protein (APP) gene, lies on chromosome 21; there are three copies of 
chromosome 21 in DS, potentially disrupting the gene dosage for all the genes on 
this chromosome. The consortium took a lifespan perspective, both seeking to 
understand the degenerative disease of AD and to predict as early as in infancy 
which individuals with DS are most at risk of the disease in adulthood. AKS 
worked with the infant and child cohorts, investigating whether risk factors for 
AD would be re#ected in early developmental trajectories (the answer: sometimes, 
sometimes not; D’Souza et al., 2020; Thomas et al., 2020 submitted). She also 
addressed the di$culties of developing cognitive tests for infants and children with 
DS and how to match these with the tests being developed for the mouse models 
of the syndrome (see D’Souza et al., Chapter 16). 

The LonDownS project was a large a"air, !ve years in length including 
longitudinal follow-ups of children and adults, and a multidisciplinary team set to 
investigate dementia in adults, mouse models of DS, genetics of AD risk, in vitro 
modelling of DS neurons cultured from induced pleuripotent stem cells, and of 
course, AKS’s study of infancy in DS, with the largest UK cohort that she could 
manage to put together (over 100, in the end, with around half of those being 
followed up longitudinally) (see Karmilo"-Smith et al., 2016). AKS embraced the 
complexity of development, instead of attempting to simplify, seeking to measure 
her cohort across multiple behaviours, with multiple methods (behavioural, 
eye-gaze monitoring, brain imaging, genetics), including measures of parent-child 
interaction and sleep. DB, the second author of this chapter, joined her team to 
focus on the analysis of brain imaging data for the infants with DS and typically 
developing controls. 

It is here that the notion of modularity resurfaces, in a di"erent guise. A new 
technique has emerged to analyse both structural and functional brain imaging 
data, one that focuses on networks, construed within the mathematical framework 
of Graph Theory. We will go into a little more detail in the following paragraphs to 
convey the technical innovations of Graph Theory and the potential link of 
imaging data to cognition. Graph Theory takes data summarising the correlations 
between many variables and translates these into graphs, where each variable is a 
node in the network, and the patterns of correlations are re#ected in the links 
joining the nodes. For brain imaging data, the nodes may be parcellated brain 
regions (structural analyses), signals from optical or electrical sensors spread over 
the scalp, or blood oxygenation levels from speci!c brain regions (functional 
analyses) (see Sporns, 2014). In structural analyses, the key question is whether two 
regions are connected, while for functional analyses, the key question is whether 
the activity of pairs of nodes is correlated over time, and therefore presumably 
involved in similar processes. 

Once a network has been generated from a set of correlational data, a range of 
metrics can be generated describing the graph. Three of the most widely used 
measures are whether a network is characterised by hubs, the average path length 
between any two nodes, and the level of modularity (Vertes & Bullmore, 2015). 
Hubs are nodes that have a number of links that greatly exceeds the average, 
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suggesting they are key locations for communication between less connected areas. 
The average path length is a measure of e$ciency, indicating how many links have 
to be traversed to move from any node to any other node. Short average path 
length indicates a network architecture that facilitates fast communication. 
Modularity in graph theory is a measure that assesses the division of a network into 
groups (also called clusters or communities): networks with high modularity have 
dense connections between the nodes within modules but sparse connections 
between nodes in di"erent modules (Newman, 2006). In functional terms, the 
activity of a set of nodes (call it, group A) may be highly correlated among each 
other, but uncorrelated to another group (B), while the nodes in B in turn show 
high correlations among each other. Figure 13.1 shows examples of networks 
exhibiting low modularity and high modularity, respectively. In brain terms, 
therefore, a module now comes to mean sets of brain areas which appear to be 
strongly physically connected among themselves but not to other regions (struc-
tural modularity), or sets of regions whose activity seems to be highly correlated to 
each other but not to other regions (functional modularity). Modularity in this 
sense indeed appears to be a property of biological systems (Newman, 2006; 
Sporns, 2014). 

Analyses of brain imaging data employing graph theoretic techniques have 
found that graph metrics appear to correspond to interesting cognitive dimensions. 
When Crossley, Mechelli, and Vertes (2013) examined co-activated regions across 
a large set of functional imaging studies, they found a coactivation network that 
was modular, with occipital, central, and default-mode modules predominantly 
coactivated by speci!c cognitive domains including, respectively, perception, 
action, and emotion. Networks appear to alter across development and are sen-
sitive to di"erences in atypical development (Morgan, White, Bullmore, & Vertes, 
2018; Vertes & Bullmore, 2015; Whitaker et al., 2016). When Hilger, Ekman, 
Fiebach, and Basten (2017) correlated measures of general intelligence to networks 

FIGURE 13.1 Illustrative network analysis results. Both networks have the same 
number of nodes and vertices, but network (a) has low modularity while network (b) 
has high modularity  
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constructed from resting-state functional magnetic resonance imaging data in a 
sample of over 300 individuals, they found brain networks characterised by 
substantial modularity. Intelligence was not associated with global features of 
modularity, such as the number or size of modules. However, intelligence was 
associated with node-speci!c measures of within- and between-module con-
nectivity, particularly in frontal and parietal brain regions that have previously 
been linked to intelligence. 

AKS, DB and their team acquired resting-state EEG data from the cohort of 
infants and toddlers with DS as they watched a short 2-minute video. The pro-
spect was that this kind of sensitive measure might detect di"erences in underlying 
brain processes re#ecting later risk/resilience to AD even before they are manifest 
in behaviour, on the basis that in typical development, genes conferring additional 
risk for AD have been observed to in#uence white matter growth as early as 2–25 
months of age (Dean, Jerskey, & Chen, 2014). The analyses of these data are still 
on-going, and we present here some of the provisional results to illustrate the 
method, and also some of its limitations. 

In EEG analyses, the small voltages changes produced at the scalp by brain 
activity are measured in the millisecond range. This activity can be broken down 
into the amount of energy produced (power) and phase in di"erent frequency 
bands, typically delta (0.1–3 Hz), theta (4–7 Hz), alpha (8–15 Hz), beta 
(16–31 Hz), and, gamma (32–100 Hz). Comparing the phase of the activity be-
tween nodes (in the case of EEG this is usually sensors) can be used as a way of 
quantifying the degree of connectedness between the nodes, and undertaking this 
for all combinations of nodes allows creation of a network or graph. Speci!cally, 
the degree of correlation between nodes was determined by the weighted Phase 
lag index (https://www.nbtwiki.net/doku.php?id=tutorial:phase_lag_index), so 
the graph measures were not built from the overall energy at a particular frequency 
band (the power) but instead the similarity between phases of EEG activity at the 
nodes. 

The goal here was to explore whether individual di"erences in the properties of 
these networks correlated to measures of cognition. Figure 13.2 shows scatter plots 
linking each network’s cluster coe$cient in each frequency band to the children’s 
receptive language ability, as measured by the Mullen test (Mullen, 1995). It is 
evident here that no relationship was present for any frequency band, despite 
extensive variation in language ability. Figure 13.3 focuses on just one band, beta, 
and examines the change in !ve di"erent network metrics across chronological 
age.2 Cluster coe$cient, global and local e$ciency each reduced with age, while 
mean shortest path length increased, and modularity showed no change. 
Figure 13.4 contrasts the correlation of modularity and mean shortest path length 
with overall mental age on the Mullen: there was no relationship with modularity, 
but an increase in shortest path length with increasing mental age. These results 
replicate the developmental sensitivity of network metrics and the absence of a 
correlation of overall modularity with intelligence observed by Hilger et al. 
(2017). The increase in shortest path length both with age and with mental age is 
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FIGURE 13.2 Example network analysis results from EEG data as infants and toddlers 
with DS watched a short video. Graphs were generated on 40 seconds of data for 
around 40 children for 5 frequency bands (delta, theta, alpha, beta, and gamma). 
Graphs were proportionally thresholded so 20% of strongest connections remain. Data 
show the relationship between the cluster coe$cient (the degree to which nodes in a 
graph tend to cluster together) and receptive language ability at di"erent frequency 
band: (a) alpha (b) beta (c) delta (d) gamma, and (e) theta  

FIGURE 13.3 Example network analysis results from EEG data as infants and toddlers 
with DS watched a short video. Data show the relationship between di"erent graph 
metrics and chronological age in the beta frequency band. (a) Cluster coe$cient (b) 
global e$ciency (c) local e$ciency (d) mean shortest path length, and (e) modularity  
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suggestive of worsening e$ciency in the network, which is consistent with the 
emerging developmental delay observed in DS across early childhood (D’Souza 
et al., in preparation). 

However, these data remain provisional because they need to be compared to 
the patterns observed in typical development (currently underway) and because of 
their sensitivity to decisions made in constructing the graphs. For instance, EEG 
data are noisy: decisions need to be made in the quality of the signal that is in-
cluded into the analyses; in unweighted graphs, links are either present or absent: 
decisions need to be made on strength of the correlation between any two nodes 
required before a link is generated. Moreover, as with any neuroscience data 
generating a large number of comparisons, there is the challenge of how to correct 
for elevated risk of Type 1 statistical errors (false alarms). Many of the other 
comparisons in other frequency bands were null. In these analyses, we have 
5 di"erent measures of cognition from the Mullen test plus chronological age, 
5 di"erent graph measures, and 5 di"erent frequency bands (150 comparisons). 
Without an a priori hypothesis, the appropriate signi!cance level (alpha) would be 
.0003 rather than the standard of .05, which represents a sti" test for noisy data. 
The sense is that such analyses might give #eeting glimpses into emerging ar-
chitectures, but would stand in need of replication in other samples before being 
viewed as robust. 

Final thoughts 

We see here, then, the notion of modularity recast. It is now a data-driven concept 
based on how the brain is actually working, rather than an a priori design principle, 
one that would seem to make sense for potential cognitive systems to employ. 
While functional brain imaging presumes some degree of domain-speci!city of 
local neural processing, overall function emerges from the interaction of many 
regions. Moreover, these regions may not necessarily align with the modules or 

FIGURE 13.4 Relationship between (a) the modularity metric and mental age in the 
beta frequency band; and (b) the mean shortest path length and mental age in the 
beta band  
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component processes articulated in cognitive theories (Price & Friston, 2005). 
Since modularity is now data driven, it is an empirical issue whether it is a property 
that alters across development or varies with intellectual ability. 

In our view, the routine use of brain imaging data to complement cognitive 
theories of development makes it unlikely we will return to the 1980s Fodorian 
notion of modularity, as research proceeds into the 2020s. For the mammalian 
brain, evolution does not appear to have followed the principle of componential 
design that might have yielded the bene!ts Fodor had in mind. Developmental 
studies suggest that specialisation is in part an emergent property in#uenced either 
by experience or internally generated neural activity, so called interactive speciali-
sation ( Johnson, this volume). The on-line interactivity of di"erent brain regions 
characterised by graph theory does not seem consistent with the key idea of 
information encapsulation championed by Fodor. 

However, this reality does not negate Fodor’s key insight – we still need to 
characterise how, in brain terms, fast perception is di"erent to slow thinking, why 
optical illusions are resistant to knowledge, or why the arcane knowledge un-
derlying the processing of syntax appears unconscious and speci!c to language. To 
take one contemporary puzzle: when teenagers spend hundreds of hours playing 
action video games, they change their brains and enhance their visual perception 
skills, particularly for peripheral attention. Yet, despite this massive e"ort, and the 
observed behavioural change, brain imaging suggests that no enhancement has 
occurred to ‘bottom-up’, automatically triggered, exogenous attention, only to 
voluntarily exerted top-down attention (Altarelli, Green, & Bavelier, 2020). Why 
should that be? What is di"erent about exogenous attention? Altarelli et al. report 
that it remains largely unknown why initial orienting under the control of exo-
genous attention is not altered by intensive action video game play, despite it being 
advantageous to improve this skill for game performance. They argue one possible 
explanation is that orienting develops very early during development and is in a 
large part mediated by sub-cortical structures, such as the nucleus basalis or the 
pulvinar; these structures may be less plastic later in life than cortical brain regions 
that support top-down attentional mechanisms. This account seems close to the 
kind of dimension of cognition that Fodor had in mind: a fast, automatic, early 
developing, modular perceptual function, to be contrasted with a slower, more 
strategic and informationally rich system exerting top-down control. Similarly, we 
are yet to construct convincing explanations for the phenomena that led AKS to 
propose representational redescription in the early part of her research career – that 
in many cognitive domains (but not all), expertise can be accompanied by explicit 
knowledge and greater #exibility in a phase of development extending beyond 
behavioural mastery of the task itself. 

These challenges, posed by theoretical adversaries such as AKS and Fodor, 
remain for the future. Yet it is our belief that the multi-disciplinary approach 
advocated by AKS, with development at its core, is best positioned to yield the 
answers we seek. 
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Notes  
1 Fodor (1985): ‘A module is (inter alia) an informationally encapsulated computational 

system – an inference-making mechanism whose access to background information is 
constrained by general features of cognitive architecture, hence relatively rigidly and 
relatively permanently constrained’ (p. 3).  

2 Graph Theory network metric de!nitions: Cluster coe#cient: A measure of the degree to 
which nodes in a graph tend to cluster together. To what extent are the nodes to which a 
given node is connected, connected to each other? Global e#ciency: The e$ciency of a 
network measures how e$ciently it exchanges information. Global e$ciency quanti!es 
the exchange of information across the whole network where information is con-
currently exchanged. Local e#ciency: The local e$ciency quanti!es a network’s resistance 
to failure on a small scale. The local e$ciency of a node re#ects how well information is 
exchanged by its neighbours when it is removed. Mean shortest path length: The average 
number of steps along the shortest paths for all possible pairs of network nodes, which 
indexes the information #ow across a network. Modularity: Modularity measures the 
strength of division of a network into groups. Networks with high modularity have 
dense connections between the nodes within modules, but sparse connections between 
nodes in di"erent modules. 
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